Our supplementary handouts were mostly graphical, and they appeared at the lectures listed in this table.
LEC # | TOPICS | HANDOUTS |
---|---|---|
I. Complex Algebra and Functions | ||
5 | Simple Mappings: az+b, z2, √z Idea of Conformality |
(PDF) |
6 | Complex Exponential | (PDF) |
7 | Complex Trigonometric and Hyperbolic Functions | (PDF) |
II. Complex Integration | ||
11 | Contour Integrals | (PDF) |
15 | Bounds Liouville's Theorem Maximum Modulus Principle |
(PDF) |
17 | Radius of Convergence of Taylor Series | (PDF) |
III. Residue Calculus | ||
21 | Real Integrals From -∞ to +∞ Conversion to cx Contours |
(PDF) |
IV. Conformal Mapping | ||
25 | Invariance of Laplace's Equation | (PDF) |
27 | Bilinear/Mobius Transformations | (PDF) |
28 | Applications I | (PDF) |
29 | Applications II | (PDF) |
V. Fourier Series and Transforms | ||
30 | Complex Fourier Series | (PDF) |
31 | Oscillating Systems Periodic Functions |
(PDF) |
32 | Questions of Convergence Scanning Function Gibbs Phenomenon |
(PDF) |
35 | Special Topic: The Magic of FFTs I | (PDF) |
36 | Special Topic: The Magic of FFTs II | (PDF) |