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1. Introduction to neural circuits
2. Computational roles of feedback signals
3. Open questions, challenges, opportunities



Biologically-inspired computation

Claim (without proof):
over millions of years of evolution, ‘interesting ” solutions to
difficult problems have emerged through changes in neuronal

circuits

Tools, models,

hardware o
Listening to neuronal

circuits

Decoding activity
Computational models

Theories
Technology developments ; ;

Writing-in information
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Some features of brain-based computations

« Hardware and software that work for many decades
« Parallel computation (with serial bottlenecks)

* Reprogrammable architecture

« Single-shot learning

« “Discover” structure in data

* Fault tolerance

« Robustness to sensory transformations

« Component interaction and integration of sensory modalities



Why study neural circuits?

 We can begin to explore high-level at the neural
circuit level

* Golden age for neural circuits: opportunity to
manipulate, disrupt and interact with neural circuits
at unprecedented resolution

* Theories can be rigorously tested at the neural level

* Empirical findings can be readily translated into
algorithms
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Methods to study the brain at different scales
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Kreiman, Gabriel. "Neural coding: computational and biophysical
perspectives." Physics of Life Reviews 1, no. 2 (2004): 71-102.

Kreiman. Physics of Life Reviews 2004
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Simulating single neurons: A nested family of
models
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Geometrically accurate models vs. spherical cows

with point masses
—> —>
1
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A central question in Theoretical Neuroscience:
What is the “right” level of abstraction?




The leaky integrate-and-fire model

Lapicque 1907
Below threshold, the voltage is governed by:
av(t) _ V(1)
dt R
A spike is fired when V(t)>V,, (and V(t) is reset)
A refractory period ¢, is imposed after a spike

+1(1)

Simple and fast

Does not consider:
—  spike-rate adaptation
— multiple compartments
— sub-ms biophysics
— neuronal geometry
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Leaky I&F neurons: a simple implementation

C@: - @+[(t)

function [V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,l_e,dt,n) dt R

% ultra-simple implementation of integrate-and-fire model

% inputs:

% E_L = leak potential [e.g. -65 mV]

% V_res = reset potential [e.g. E_L]

% V_th = threshold potential  [e.g. -50 mV] T A” Of these |ines are com ments
% tau_m = membrane time constant [e.g. 10 ms]

% R_m = membrane resistance  [e.g. 10 MOhm]

% |_e = external input [e.g. white noise]
% dt = time step [e.g. 0.1 ms]
% n = number of time points [e.g. 1000]

%
% outputs:

%V  =intracellular voltage [nx 1]
% spk =0 or 1 indicating spikes [n x 1]
V(1)=V_res; % initial voltage This is the key line integrating the
fsé’rktizzﬁ’fs(”ﬂ ) differential equation
V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * |_e(t)); % Change in voltage at time t
if (V(t)>V_th) % Emit a spike if V is above threshold
V(t)=V_res; % And reset the voltage
spk(t)=1;
end
end
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Circuits — some basic definitions

recurrent, exc

-------- recurrent, inh

feed-forward, exc
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2. There are excitatory neurons and inhibitory neurons (and many types of inhibitory

neurons)
3. Most models assume balance between excitation and inhibition

4, Most models do not include layers and the anatomical separation of forward and back

pathways

5. There are many more recurrent+feedback connections than feed-forward connections

(the opposite is true about models...)
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© Oxford University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Felleman, Daniel J., and David C. Van Essen. "Distributed hierarchical processing in
the primate cerebral cortex. " Cerebral cortex 1, no. 1 (1991): 1-47.
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And a canonical microcircuit structure within

each area

_IA,
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Douglas and Martin 2004

© Annual Reviews of Neuroscience. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Douglas, Rodney J., and Kevan AC Martin. "Neuronal circuits of the neocortex.
"Annu. Rev. Neurosci. 27 (2004): 419-451.
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First order approximation: “Immediate”
recognition as a hierarchical feed-forward process

1.

Behavior: We can recognize objects within ~150ms (e.qg.

Potter et al 1969, Thorpe et al 1996)

Physiology: Visually selective responses to complex

shapes arise within ~150 ms (e.g. Keysers et al 2001,
Hung et al 2005, Liu et al 2009)

Computation: Bottom up computational models perform
relatively well in basic object recognition (e.g. Fukushima
1980, Riesenhuber and Poggio 1999)

14



Why are there so many feedback connections?

There are more horizontal + top-down projections than
bottom-up ones (e.g. Douglas 2004, Callaway 2004)
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What are feed baCk Slgnals dOlng? © Oxford University Press. All rights reserved. This content is
Whenf) excluded from our Creative Commons license. For more

. information, see https://ocw.mit.edu/help/fag-fair-use/.
Why’) Source: Markov, Nikola T., M. M. Ercsey-Ravasz, AR Ribeiro

- Gomes, Camille Lamy, Loic Magrou, Julien Vezoli, P. Misery et al.

How? "A weighted and directed interareal connectivity matrix for

macaque cerebral cortex." Cerebral cortex (2012): bhs270. 15


https://ocw.mit.edu/help/faq-fair-use/

Computational roles of feedback signals

1. Fundamental computations in V1
2. Visual search
3. Pattern completion

16



Neurons in primary visual cortex show
orientation tuning

Gabor function

|2 2|
D(x,y) = L expt— X ~— 2y 2Jcos(kx—¢5)

270, 0,

Image removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library : Distributed by W.H. Freeman, c1988. ISBN: 0716750201.
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A simple model for simple cells

LGN % V1

A feed-forward model for orientation selectivity in V1
(by no means the only model)
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Complex cells show position tolerance

LI i |l “Simple” Cell

LI LI LI “Complex” Cell

© Wiley. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Hubel, David H., and Torsten N. Wiesel. "Receptive fields, binocular
interaction and functional architecture in the cat's visual cortex. "The Journal of
physiology 160, no. 1 (1962): 106-154.

Stimulus: black bar

Stimulus presentation time

; Receptive field
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A model to describe tolerance in complex cells
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A feed-forward model
describing the responses of
complex cells arising from
non-linear (e.g. OR, max)
combination of inputs from
multiple simple cells

(by no means the only model)
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Reversible inactivation of V2/V3
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Courtesy of Society for Neuroscience. License CC BY NC SA.

Source: Nassi, Jonathan J., Stephen G. Lomber, and Richard T. Born.
"Corticocortical feedback contributes to surround suppression in V1 of

the alert primate. "Journal of Neuroscience 33, no. 19 (2013): 85048517. . .
JoJo Nassi and Richard Born
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Feedback inactivation does not change
orientation or direction selectivity
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Temporal dynamics of feedback inactivation
effects
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Area summation curve in V1

Rpeak ol el
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Rasym- ---------
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Summation Field Surround Diameter

Courtesy of Frontiers in Systems Neuroscience. Used with permission.
Source: Nassi, Jonathan J., Camille Gdmez-Laberge, Gabriel Kreiman, and
Richard T. Born. "Corticocortical feedback increases the spatial extent of
normalization. "Frontiers in systems neuroscience 8 (2014): 105.
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Feedback inactivation leads to reduced
surround suppression
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Courtesy of Frontiers in Systems Neuroscience. Used with permission.
Source: Nassi, Jonathan J., Camille Gdmez-Laberge, Gabriel Kreiman, and Richard T. Born. "Corticocortical

feedback increases the spatial extent of normalization. "Frontiers in systems neuroscience 8 (2014): 105.
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A simple normalization model to explain area
summation curves
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Feedback increases the normalization width: w,,
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Computational roles of feedback signals

1. Fundamental computations in V1
2. Visual search
3. Pattern completion

Picture of Waldo removed due to copyright restrictions

28



Feedback
signals in
visual
search

Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral

Cortex (2015): bhv129.
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The model can search for objects in cluttered
images

Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral

Cortex (2015): bhv129.

30



The model’s performance is comparable to human
performance in the same visual search task

Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral
Cortex (2015): bhv129.
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Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral
Cortex (2015): bhv129.
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Computational roles of feedback signals

1. Fundamental computations in V1
2. Visual search

3. Pattern completion
.

Image by Hanlin Tang

Courtesy of Hanlin Tang. Used with permission.
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Objects can be recognized from partial information

20 bubbles

© Singer-Verlag. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Behavior: Robustness to presentation of
partial image information

20 bubbles

Performance
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© Singer-Verlag. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Example responses during object completion
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: Tang, Hanlin, Calin Buia, Radhika Madhavan, Nathan E. Crone, Joseph R.
Madsen, William S. Anderson, and Gabriel Kreiman. "Spatiotemporal dynamics
underlying object completion in human ventral visual cortex." Neuron 83, no. 3
(2014): 736-748.

Tang et al,

: Neuron 2014
Inferior Temporal Gyrus 37
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Example responses during object completion
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Tang, Hanlin, Calin Buia, Radhika Madhavan, Nathan E. Crone, Joseph R.
Madsen, William S. Anderson, and Gabriel Kreiman. "Spatiotemporal dynamics

i underlying object completion in human ventral visual cortex." Neuron 83, no. 3
Inferior Temporal Gyrus (525

Tang et al,
Neuron 2014
3
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Limited object completion in feed-forward model

Figure removed due to copyright restrictions. Please see the video.
Source: Figure 29, Kreiman, Gabriel. "Computational models of

visual object recognition. "Principles of Neural Coding 1 (2013): 0.

2000 “C2” units in the model

Model responses to 25 exemplar objects
Consider 20 units with high SNR (training data)
500 repetitions with different bubble locations
Train classifier with 70% of the repetitions

Test classifier on remaining 30% of the repetitions
Identification task (chance=4%)
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Adding recurrency to deep network models
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Preliminary results: Recurrent connections
can improve recognition of occluded objects

Recurrent model

Behavior Trained on whole images
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Backward masking has been proposed to reduce
the effects of feedback
Models: Masks:

50-90 ms

(b)
[ YN =
S 4 100 ms
40-80 ms * .

80-150 ms Stim | |Mask

0 40ms

(a)

trends in Neurosciences

Lamme V, Roelfsema P (2000)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Lamme, Victor AF, and Pieter R. Roelfsema. "The distinct modes of vision
offered by feedforward and recurrent processing." Trends in neurosciences 23, no.
11 (2000): 571-579.

* For short delays (SOA<20ms), the mask reduces visibility of the first stimulus.

* For longer delays, the mask disrupts top-down processing.
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Object completion task (psychophysics)
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Backward masking impairs recognition of partial

)

njects at short SOAs
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Summary

*Basic mechanisms in V1: Feedback
signals enhance surround suppression

*Visual search: Tuned feedback signals
can instantiate visual search (and
feature-based attention)

(Turing question: what will happen
next?)

=Pattern completion: Feedback and/or
recurrent connections can help
recognize heavily occluded objects
(Turing question: what is there?)
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Outline

. Introduction to neural circuits and computational
models

. Computational roles of feedback signals

3. Open questions, challenges, opportunities
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Reasons for optimism

* Wiring diagram: Rapid progress tracing circuits in
humans (low resolution) and animal models (high
resolution)

e Strength in numbers: Rapid progress recording and
mathematically analyzing neurophysiological
activity from large ensembles in humans and
animal models

* Source code: We can manipulate neural circuits
(rodents, macaques) to examine necessary and
sufficient computational elements ’




Wiring diagrams
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Fig. 2. The C. elegans wiring diagram is a network of identifiable, labeled neurons connected by chemical and electrical

synapses. Red, sensory neurons; blue, interneurons; green, motorneurons. (a). Signal flow view shows neurons arranged so that

the direction of signal flow is mostly downward. (b). Affinity view shows structure in the horizontal planc reflecting weighted
non-directional adjacency of neurons in the network.

Original work: Sydney Brenner
Image: Doctoral Dissertation Thesis by
Beth Chen, 2007

Varshney, Lav R., Beth L. Chen, Eric Paniagua, David H. Hall, and Dmitri B.
Chklovskii. "Structural properties of the Caenorhabditis elegans neuronal
network." PLoS Comput Biol 7, no. 2 (2011): €e1001066. DOI:
10.1371/journal.pcbi.1001066. License CC BY. 50

© Carl Zeiss Microscopy. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.
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Strength in numbers
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Strength in numbers: electrode arrays (e.g.

Boyden)
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3-D Array Construction
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Scalable 3-D Microelectrode Recording Architectures for Characterization

2]

Synthetic Neurobiology

brain - cognitive sc

BIOLOGICAL ENGINEERING

Future Amplifier Integration

Optogenetics is commonly used for precision modulation of the activity of specific
neurons within neural circuits, but assessing the impact of optogenetic neuromodu-
lation on the neural activity of local and global circuits remains difficult. Our collab-
orative team recently initiated a project (Scholvin et al., SFN 2011) to design and
implement 3-D silicon-micromachined electrode arrays with customizable electrode
locations, targetable to defined neural substrates distributed in a 3-D pattern
throughout a neural network in the mammalian brain, and compatible with simulta-
neous use of a diversity of existing light delivery devices.

We here describe a series of innovations we have pursued aimed at facilitating the
scalability aspect of these probes - that is, aspects of probe design that should enable
them to scale up to 1000's of channels of neural recording or more. First, we have de-
veloped streamlined electrode fabrication methodologies that enable microma-
chined probes to be first fabricated using conventional silicon micromachining, then
rapidly assembled into custom 3-D arrays, with semi-automated formation of the
necessary electrical connections and mechanical constraints. Second, we have devel-
oped a set of surgical and insertion technologies towards the goal of enabling the in-
sertion of electrode arrays with a high number of electrode shanks into the brain,
while minimizing probe insertion damage. Finally, in order to facilitate scaling of the
channel count beyond what is feasible with external amplifiers, we are exploring new
approaches for integration of amplifier circuits directly on the probe arrays them-
selves, to remove bottlenecks associated with connecting of probes to the outside
world.

Design Components

Left: Principle of the 3-D array assembly. The
base-plate (center) is populated with a series of
2-Darray inserts (top). Each insert has a number of
recording sites along each needle. The inserts are

h held in place on the opposite site by a hook
(bottom). Accurate needle alignment across the
array is achieved by “V" shaped structures (left and

i right) that force the inserts to be in parallel.

Nessl T ogres)

Right: Alignment measurements from three
different arrays, indicating the needles are
aligned within 0.3 degrees. For needle
lengths of ~3mm, this translates to the top
being tilted by <15um.

eedie st ¢ T (o)

Above, left and center: Assembled 3-D array, demonstrating the construction mechanisms. The above array has 40 needles, with three electrode sites along every needle.
Each needle was customized, and in this example designed with a unique length and placed at varying positions along each 2-D inserts. The V-shaped alignment bracket
mechanism is seen in the center. Right: underside of the 3-D array showing the self-locking assembly mechanism, as well as the electrical connections between the base plate

and each array insert. . .
Electrical Connections and Testing

Left: impedance characterization of a probe-saline-probe cir-
cuit, for a 10,000 um2 test pad. The pad impedance at 1 kHz

measures 11 kOhm/pad. For a 100um2 pad, this translates to
~1 MOhm. For actual 10x10um pads, the measured 1kHzim-
pedance was 300-600 kOhm/pad.

Above: Close-up of the probe needle tips, with elec-
trode sites highlighted in false color. Here, each needle
has three recording sites, and a cross section of 50x50
um. These dimensions can easily be varied by use of
different wafer and tools.

Below: Using a 2-D test probe, but the same fabrication
process, we recorded spikes in 1 in an anesthetised
mouse. The probe sites are 200 um2 n area, with typical
of under 1 MOhm as measured in-vivo. Data
shown for a 2 second window (below) and for 56 superim-
posed spikes (right) using a-50uV threshold.

Below: Suggested design for a 1000 channel 3-D
probe that is capable of recording uniformly
throughout the brain. Recording sites are spaced
300 um in the plane and 110 um in the vertical.

Right: Amplifier system design for
future integration onto the probes.

In order to achieve >>1000 chan-
nels with on-probe amplification

and multiplexing, an integrated
amplifier and multiplexer circuit

was developed, with system sche- &
matic for a 32 channel block (right)
and circuit schematic for each
channel amplifier (below). A photo
of a32 channel test chip is shown
below. The circuit footprint is
90x500um per channel. Vg
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Playing with the source code: Using light to
modulate neural with high specificity
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© Elsevier, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Han, Xue, Xiaofeng Qian, Jacob G. Bernstein, Hui-hui Zhou, Giovanni Talei
Franzesi, Patrick Stern, Roderick T. Bronson, Ann M. Graybiel, Robert Desimone, and

Edward S. Boyden. "Millisecond-timescale optical control of neural dynamics in the
nonhuman primate brain." Neuron 62, no. 2 (2009): 191-198.

© Edward Boyden. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
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Biological codes to computational codes
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