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1. Introduction to neural circuits 

2. Computational roles of feedback signals 

3. Open questions, challenges, opportunities 

1



Biologically-inspired computation 

Algorithms, 
solutions 

Theories 
 
Technology developments 
 
Computational models 
 
 

Tools, models, 
hardware 

Listening to neuronal 
circuits 
 
Decoding activity 
 
Writing-in information 

Claim (without proof):  

over millions of years of evolution, “interesting” solutions to 

difficult problems have emerged through changes in neuronal 

circuits 
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Some features of brain-based computations 

• Hardware and software that work for many decades 
 

• Parallel computation (with serial bottlenecks) 
 

• Reprogrammable architecture 
 

• Single-shot learning 
 

• “Discover” structure in data 
 

• Fault tolerance 
 

• Robustness to sensory transformations 
 

• Component interaction and integration of sensory modalities 
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Why study neural circuits? 

• We can begin to explore high-level at the neural 
circuit level 

• Golden age for neural circuits: opportunity to 
manipulate, disrupt and interact with neural circuits 
at unprecedented resolution 

• Theories can be rigorously tested at the neural level 

• Empirical findings can be readily translated into 
algorithms 
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Recommended books 

•Abbott and Dayan. Theoretical Neuroscience - Computational and Mathematical Modeling of Neural 
Systems [2001] (ISBN 0-262-04199-5). MIT Press. 

•Koch. Biophysics of Computation [1999] (ISBN 0-19-510491-9). Oxford University Press.  

•Gabbiani and Cox. Mathematics for Neuroscientists. [2010] (ISBN 978-0-12-374882-9). Academic Press. 

•Kriegeskorte and Kreiman. Visual Population Codes. [2010] (ISBN 9780262016247). MIT Press. 

•Hertz, Krogh, and Palmer. Introduction to the Theory of Neural Computation. [1991] (ISBN 0-20151560-1). 
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Methods to study the brain at different scales 

Kreiman. Physics of Life Reviews 2004 

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Kreiman, Gabriel. "Neural coding: computational and biophysical
perspectives." Physics of Life Reviews 1, no. 2 (2004): 71-102.
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Simulating single neurons: A nested family of 
models 

Filter 
operations 

Integrate-
and-fire 
circuit 

Hodgkin-
Huxley units 

Multi-
compartmental 
models 

Spines, 
channels 

Biological 
accuracy 
 
Lack of analytical 
solutions 
 
Computational 
complexity 
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Geometrically accurate models vs. spherical cows 
with point masses 

A central question in Theoretical Neuroscience: 
What is the “right” level of abstraction? 
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The leaky integrate-and-fire model 
• Lapicque 1907 

• Below threshold, the voltage is governed by:  

 

 

• A spike is fired when V(t)>Vthr (and V(t) is reset) 

• A refractory period tref is imposed after a spike 

• Simple and fast 

• Does not consider: 
–  spike-rate adaptation 

– multiple compartments 

– sub-ms biophysics 

– neuronal geometry 

  

C
dV(t)
dt

= -
V(t)
R

+ I(t)
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function [V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,I_e,dt,n) 
 
% ultra-simple implementation of integrate-and-fire model 
% inputs: 
% E_L    = leak potential           [e.g. -65 mV] 
% V_res  = reset potential          [e.g. E_L] 
% V_th   = threshold potential      [e.g. -50 mV] 
% tau_m  = membrane time constant   [e.g. 10 ms] 
% R_m    = membrane resistance      [e.g. 10 MOhm] 
% I_e    = external input           [e.g. white noise] 
% dt     = time step                [e.g. 0.1 ms] 
% n      = number of time points    [e.g. 1000] 
% 
% outputs: 
% V      = intracellular voltage    [n x 1] 
% spk    = 0 or 1 indicating spikes [n x 1] 
 
V(1)=V_res;      % initial voltage 
spk=zeros(n,1); 
for t=2:n 
    V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * I_e(t));     % Change in voltage at time t 
    if (V(t)>V_th)      % Emit a spike if V is above threshold 
        V(t)=V_res;      % And reset the voltage 
        spk(t)=1; 
    end 
end 

All of these lines are comments 

This is the key line integrating the 
differential equation 

  

C
dV(t)
dt

= -
V(t)
R

+ I(t)

Leaky I&F neurons: a simple implementation 
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Circuits – some basic definitions 

Notes: 

1. Connectivity does not need to be all-to-all 

2. There are excitatory neurons and inhibitory neurons (and many types of inhibitory 
neurons) 

3. Most models assume balance between excitation and inhibition 

4. Most models do not include layers and the anatomical separation of forward and back 
pathways 

5. There are many more recurrent+feedback connections than feed-forward connections 
(the opposite is true about models…) 
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The visual system shows an approximately hierarchical 
architecture 

Felleman and Van Essen 1991 
© Oxford University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Felleman, Daniel J., and David C. Van Essen. "Distributed hierarchical processing in
the primate cerebral cortex. " Cerebral cortex 1, no. 1 (1991): 1-47. 12
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And a canonical microcircuit structure within 
each area 

Douglas and Martin 2004 
© Annual Reviews of Neuroscience. All rights reserved. This content is excluded from our 

CreativeCommons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Douglas, Rodney J., and Kevan AC Martin. "Neuronal circuits of the neocortex.
"Annu. Rev. Neurosci. 27 (2004): 419-451. 13
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First order approximation: “Immediate” 
recognition as a hierarchical feed-forward process 

1. Behavior: We can recognize objects within ~150ms (e.g. 
Potter et al 1969, Thorpe et al 1996) 
 

2. Physiology: Visually selective responses to complex 
shapes arise within ~150 ms (e.g. Keysers et al 2001, 
Hung et al 2005, Liu et al 2009) 
 

3. Computation: Bottom up computational models perform 
relatively well in basic object recognition (e.g. Fukushima 
1980, Riesenhuber and Poggio 1999) 
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Why are there so many feedback connections? 

Markov et al 2012 

V2 

There are more horizontal + top-down projections than 
bottom-up ones (e.g. Douglas 2004, Callaway 2004) 

 

What are feedback signals doing?  
When? 
Why? 
How?   

© Oxford University Press. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Markov, Nikola T., M. M. Ercsey-Ravasz, AR Ribeiro
Gomes, Camille Lamy, Loic Magrou, Julien Vezoli, P. Misery et al.
"A weighted and directed interareal connectivity matrix for
macaque cerebral cortex." Cerebral cortex (2012): bhs270. 15
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Computational roles of feedback signals 

1. Fundamental computations in V1 
2. Visual search 
3. Pattern completion 
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Neurons in primary visual cortex show 
orientation tuning 

Image removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American

Library : Distributed by W.H. Freeman, c1988. ISBN: 0716750201.
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A simple model for simple cells 

A feed-forward model for orientation selectivity in V1 
(by no means the only model) 
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Complex cells show position tolerance 

Stimulus: black bar 

Stimulus presentation time 

Receptive field 

© Wiley. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Hubel, David H., and Torsten N. Wiesel. "Receptive fields, binocular

interaction and functional architecture in the cat's visual cortex. "The Journal of

physiology 160, no. 1 (1962): 106-154.
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A model to describe tolerance in complex cells 

A feed-forward model 
describing the responses of 
complex cells arising from 
non-linear (e.g. OR, max) 
combination of inputs from 
multiple simple cells 

(by no means the only model) 
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Reversible inactivation of V2/V3  

JoJo Nassi and Richard Born 

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Nassi, Jonathan J., Stephen G. Lomber, and Richard T. Born.
"Corticocortical feedback contributes to surround suppression in V1 of

the alert primate. "Journal of Neuroscience 33, no. 19 (2013): 85048517.
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Nassi et al 2013 

Feedback inactivation does not change 
orientation or direction selectivity 

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Nassi, Jonathan J., Stephen G. Lomber, and Richard T. Born.
"Corticocortical feedback contributes to surround suppression in V1 of

the alert primate. "Journal of Neuroscience 33, no. 19 (2013): 85048517.
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Temporal dynamics of feedback inactivation 
effects 

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Nassi, Jonathan J., Stephen G. Lomber, and Richard T. Born.
"Corticocortical feedback contributes to surround suppression in V1 of

the alert primate. "Journal of Neuroscience 33, no. 19 (2013): 85048517.
23
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Area summation curve in V1 

Courtesy of Frontiers in Systems Neuroscience. Used with permission.
Source: Nassi, Jonathan J., Camille Gómez-Laberge, Gabriel Kreiman, and

Richard T. Born. "Corticocortical feedback increases the spatial extent of

normalization. "Frontiers in systems neuroscience 8 (2014): 105.
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Feedback inactivation leads to reduced 
surround suppression 
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Stimulus diameter (degrees) 
Courtesy of Frontiers in Systems Neuroscience. Used with permission.
Source: Nassi, Jonathan J., Camille Gómez-Laberge, Gabriel Kreiman, and Richard T. Born. "Corticocortical

feedback increases the spatial extent of normalization. "Frontiers in systems neuroscience 8 (2014): 105.
25



A simple normalization model to explain area 
summation curves 

Courtesy of Frontiers in Systems Neuroscience. Used with permission.

Source: Nassi, Jonathan J., Camille Gómez-Laberge, Gabriel Kreiman, and Richard T. Born. "Corticocortical

feedback increases the spatial extent of normalization. "Frontiers in systems neuroscience 8 (2014): 105.
26

B
RROG (x)  R0 

D(x)

  N(x)

RROG (x)  R0 
kD[wDerf (x / 2wD )2 ]

  kN [wNerf (x / 2wN )2 ]



A C D B 

E G H F 

0.04° (p = 0.01) 

p = 0.7 p = 0.2 p = 0.8 p = 0.006 

5 s-1 (p = 0.06) 0.08 (p < 0.001) 7 s-1 (p < 0.001) 

Feedback increases the normalization width: wN 

Courtesy of Frontiers in Systems Neuroscience. Used with permission.
Source: Nassi, Jonathan J., Camille Gómez-Laberge, Gabriel Kreiman, and Richard T. Born. "Corticocortical

feedback increases the spatial extent of normalization. "Frontiers in systems neuroscience 8 (2014): 105.
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Computational roles of feedback signals 

1. Fundamental computations in V1 
2. Visual search 
3. Pattern completion 

 
 

Picture of Waldo removed due to copyright restrictions 
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Feedback 
signals in 
visual 
search 

Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral
Cortex (2015): bhv129.
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The model can search for objects in cluttered 
images 

Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral
Cortex (2015): bhv129.
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The model’s performance is comparable to human 
performance in the same visual search task 

Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral
Cortex (2015): bhv129.
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Figure removed due to copyright restrictions. Please see the video.
Source: Miconi, Thomas, Laura Groomes, and Gabriel Kreiman.
"There's Waldo! A normalization model of visual search predicts
single-trial human fixations in an object search task."Cerebral
Cortex (2015): bhv129.
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Computational roles of feedback signals 

1. Fundamental computations in V1 
2. Visual search 
3. Pattern completion 
 

Image by Hanlin Tang 
Courtesy of Hanlin Tang. Used with permission. 33



Inference and pattern completion as a hallmark of 
intelligence 

A, C, E, G,  

1, 2, 3, 5, 7, 11,  

Even though it was raining heavily,  
Jonathan decided to go out without 
an  

V-s-a- R-c-g-i-i-n 

I 

13 

Visual Recognition 

Umbrella 

Also:  
Other sensory modalities 
Music 
Social interactions 
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Objects can be recognized from partial information 

20 bubbles 

10 bubbles 

6 bubbles 

4 bubbles 
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Behavior: Robustness to presentation of 
partial image information 

20 bubbles 

10 bubbles 

6 bubbles 

4 bubbles 

© Singer-Verlag. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Example responses during object completion 

Inferior Temporal Gyrus 

Tang et al, 
Neuron 2014 

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Tang, Hanlin, Calin Buia, Radhika Madhavan, Nathan E. Crone, Joseph R.
Madsen, William S. Anderson, and Gabriel Kreiman. "Spatiotemporal dynamics
underlying object completion in human ventral visual cortex." Neuron 83, no. 3
(2014): 736-748.
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Example responses during object completion 

Inferior Temporal Gyrus 

Tang et al, 
Neuron 2014 

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Tang, Hanlin, Calin Buia, Radhika Madhavan, Nathan E. Crone, Joseph R.
Madsen, William S. Anderson, and Gabriel Kreiman. "Spatiotemporal dynamics
underlying object completion in human ventral visual cortex." Neuron 83, no. 3
(2014): 736-748. 38
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Limited object completion in feed-forward model 

Figure removed due to copyright restrictions. Please see the video.
Source: Figure 29, Kreiman, Gabriel. "Computational models of

visual object recognition. "Principles of Neural Coding 1 (2013): 0.

39

1

2000 “C2” units in the model
Model responses to 25 exemplar objects
Consider 20 units with high SNR (training data)
500 repetitions with different bubble locations
Train classifier with 70% of the repetitions
Test classifier on remaining 30% of the repetitions
Identification task (chance=4%)



Holistic responses (?) 
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Adding recurrency to deep network models 

Bill Lotter, Hanlin Tang 
41



Preliminary results: Recurrent connections 
can improve recognition of occluded objects 

Behavior 
Recurrent model 
Trained on whole images 
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• For short delays (SOA<20ms), the mask reduces visibility of the first stimulus. 

 
• For longer delays, the mask disrupts top-down processing. 

 
 

Backward masking has been proposed to reduce 
the effects of feedback 

Models:       Masks: 

Lamme V, Roelfsema P (2000) 

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Lamme, Victor AF, and Pieter R. Roelfsema. "The distinct modes of vision
offered by feedforward and recurrent processing." Trends in neurosciences 23, no.
11 (2000): 571-579.
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Object completion task (psychophysics) 

44



Backward masking impairs recognition of partial 
objects at short SOAs 

NO MASK 

MASK 

Whole Partial 

Whole Partial 
Masked 

Unmasked 
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Model performance in masking experiment 

% Occlusion 

Pe
rf

o
rm

an
ce

 

Unmasked Masked 
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Summary 

Basic mechanisms in V1: Feedback 
signals enhance surround suppression 
 
 
 
 
Visual search: Tuned feedback signals 
can instantiate visual search (and 
feature-based attention) 
(Turing question: what will happen 
next?) 
 
 
 
Pattern completion: Feedback and/or 
recurrent connections can help 
recognize heavily occluded objects 
(Turing question: what is there?) 
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Outline 

1. Introduction to neural circuits and computational 
models 

2. Computational roles of feedback signals 

3. Open questions, challenges, opportunities 
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Reasons for optimism 
• Wiring diagram: Rapid progress tracing circuits in 

humans (low resolution) and animal models (high 
resolution) 
 

• Strength in numbers: Rapid progress recording and 
mathematically analyzing neurophysiological 
activity from large ensembles in humans and 
animal models 
 

• Source code: We can manipulate neural circuits 
(rodents, macaques) to examine necessary and 
sufficient computational elements 49



Wiring diagrams 

Original work: Sydney Brenner 
Image: Doctoral Dissertation Thesis by 
Beth Chen, 2007 
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Fig. 2. The C. elegans wiring diagram is a network of identifiable, labeled neurons connected by chemical and electrical
synapses. Red, sensory neurons; blue, interneurons; green, motorneurons. (a). Signal flow view shows neurons arranged so that
the direction of signal flow is mostly downward. (b). Affinity view shows structure in the horizontal plane reflecting weighted
non-directional adjacency of neurons in the network.
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Strength in numbers 

Pseudopopulation: 318 units Hanlin Tang, Matias Ison, Itzhak Fried 
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Strength in numbers: electrode arrays (e.g. 
Boyden) 

© Jorg Scholvin and Edward Boyden. All rights reserved. This content is excluded from our
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Playing with the source code: Using light to 
modulate neural with high specificity 

Boyden-Desimone 

activate 

silence 
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Edward S. Boyden. "Millisecond-timescale optical control of neural dynamics in the 
nonhuman primate brain." Neuron 62, no. 2 (2009): 191-198. 
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Biological codes to computational codes 

Biological 
code 

Computer 
code 
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