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The lameilar hypothesis revisited

Fig. 2. The position of the hippocampal formaton in the rat brain is shown n this drawing ot a
preparation in which the cortical surface overlying the hippocampus has been removed. The hippocampus
is an elongated. C-shaped structure with the long or septotemporal axis running from the sepul nuciet
rostrally (S) to the temporal cortex (T) ventrocaudally. The short or trapsverse axis (TRANS) is onented
perpendicular to the septotemporal axis. The major fields of the hippocampal formaton (except for the
entorhinal cortex) are found in slices taken approximately midway along the septotemporal axis. The shce
pictured at top left is a representation of the summary of the major neuronal clements and intnnsx
connections of the hippocampal formation as onginally illustrated by Andersen ez al. (see text for details)
Abbreviations: DG. dentate gyrus: mf. mossy fibers: pp. pertorant path: sc. Schaffer collaterals.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Amaral, David G., and M. P. Witter. "The three-dimensional organization of
the hippocampal formation: A review of anatomical data." Neuroscience 31, no. 3
(1989): 571-591.

From Amaral and Witter, 1989
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Hippocampus in spatial and
episodic memory

The hippocampus is involved in the
formation of episodic memory as well as
spatial memory used in navigation.

Navigation - linkage of spatial locations
Episodic memory - linkage of events

Both may depend critically on temporal
sequence encoding
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Spike amplitude clustering
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Ensemble Activity in Area CA1

During Spatial Exploration

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Wilson, M. A., and B. L. McNaughton. "Dynamics of the Hippocampal
Ensemble Code for Space (Vol 261, Pg 1055, 1993)." Science 264, no. 5155

(1994): 16. . .
Wilson and McNaughton, Science, 1993
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Place Fields on Linear Tracks




Hippocampal Place Cells

cell activity behavior
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Hippocampal Ensemble Decoding

cell activity behavior
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Decoding Sleep Reactivation

cell activity behavior

ongoing



Hippocampus online and offline

Theta rhythm Sharp wave/ripples

walk still
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Buzsaki, Gyorgy. "Two-stage model of memory trace formation: A role
for “noisy” brain states." Neuroscience 31, no. 3 (1989): 551-570.

Buzsaki 1989
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Interaction of asymmetric excitation with oscillatory
variation in inhibition can translate one linear dimension
(space) into another (time).

Hippocampal phase precession may be a demonstration of
that process.
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Overlapping asymmetric place fields with oscillatory
variation in excitability translate behavioral time
relationships to biophysical timescales with preserved
temporal order
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Hippocampal theta sequences

19 &= —
Position
D 7
n ' | )
' y ’ U :l "lll Hin ﬂ‘ | "
I ‘ | \ i '
’ " 2 R » " ]
5 Il | I \ LA (A o '
o y T PRy o)
' | " II i1 LR LA ]
' | [ LR e
19 | 1 L B | l"l '
3
£ o
B 2
C P
3 %
g £
& &
0
L Ll L .
[~
o
@
o]
a
. A A A
1 N
0 500 10(%7‘6(5) S00 2000

© Wiley. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Foster, David J., and Matthew A. Wilson. "Hippocampal theta

sequences. "Hippocampus 17, no. 11 (2007): 1093-1099.

Foster and Wilson, 2007 16
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Hippocampal spatial representations are
encoded as sequences during behavior
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: Davidson, Thomas J., Fabian Kloosterman, and Matthew A. Wilson.
"Hippocampal replay of extended experience." Neuron 63, no. 4 (2009): 497-507.

Davidson, Kloosterman, and Wilson, Neuron, 2009
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HPC-PFC: functionally connected
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The hippocampus.: encoding and recognising spatial context

The prefrontal cortex: integrating the cues of current context

(held on-line in working memory) to control appropriate
behaviour

19



HPC-PFC: functionally connected during spatial working memory tasks

T-maze

20



HPC-PFC: individual electrophysiologies

. ‘PIaCe cells’: neurons with spatial
receptive fields (‘place fields’)
* Rodents, primates, humans

from Niki (1974) Brain Res. 70, 346-349

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Niki, Hiroaki. "Differential activity of prefrontal units during right and left
delayed response trials." Brain research 70, no. 2 (1974): 346-349.

21
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Multiple units from multiple electrodes in multiple sites

22






Extracellular Action
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Interactions: spikes vs. LFP
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Enhanced theta-phase locking during ' correct choice’
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Jones, Matthew W., and Matthew A. Wilson. "Theta rhythms coordinate hippocampal-
prefrontal interactions in a spatial memory task." PLoS biol 3, no. 12 (2005): e402.
https://doi.org/10.1371/journal.pbio.0030402. License CC BY.

Jones and Wilson, PLoS Biol., 2005 26
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Coherence
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Jones, Matthew W., and Matthew A. Wilson. "Theta rhythms coordinate hippocampal-
prefrontal interactions in a spatial memory task." PLoS biol 3, no. 12 (2005): e402.
https://doi.org/10.1371/journal.pbio.0030402. License CC BY.

Jones, M. et al. PLoS 2005
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Optogenetic manipulation of hippocampal inhibitory cells

600 | .
Z 400
v /‘\ v
o
& . /'l
<t
1 200 L
i?!.gu
‘ J.‘
0=
O 200 4000 600 CHT CH2 CH3 CH4
CH2 peak (V)
D E 500 F 107
400 84
I T
2 300 o 6
o B 8
% ' ’,Mﬂv'f = 200 o 4
" = =
5 e 400 o ?.
4' = 0 0
10ms -50 =25 0 25 50 75 -50 =25 0 25 50 75
Time {(ms) Time (ms)

Courtesy of eLife. License CC BY 4.0.

Source: Siegle, Joshua H., and Matthew A. Wilson. "Enhancement
of encoding and retrieval functions through theta phase-specific
manipulation of hippocampus." Elife 3 (2014): e03061
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Role of Sleep in Memory

» Sleep allows examination of memory
iIndependent of behavior.

* The formation of lasting memories may
iInvolve the communication of
information between brain areas during
sleep.

« Broadly identify two stages of non-REM
sleep —-(NREM) and rapid eye
movement sleep (REM).

30



Experimental design
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M slow-wave sleep

REM sleep
awake behavior

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: Miller, Earl K., and Matthew A. Wilson. "All my circuits: using multiple electrodes
to understand functioning neural networks." Neuron 60, no. 3 (2008): 483-488.
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Compressed Run sequences are
expressed in hippocampus during nREM
sleep
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Miller, Earl K., and Matthew A. Wilson. "All my circuits: using multiple electrodes
to understand functioning neural networks." Neuron 60, no. 3 (2008): 483-488.

Lee and Wilson, Neuron, 2002 32
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Sequences are re-expressed
during CA1 ripple events
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Lee, Albert K., and Matthew A. Wilson. "Memory of sequential
experience in the hippocampus during slow wave sleep." Neuron 36, no. 6
(2002): 1183-1194.
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Overlapping asymmetric place fields with oscillatory
variation in excitability translate behavioral time
relationships to biophysical timescales with preserved
temporal order
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Are there signatures of memory
reactivation in the neocortex during
hippocampal reactivation

* Simultaneously record in the hippocampus
and primary and secondary visual cortex
during spatial behavior.

* Look for reactivation in both structures
during sleep.

35
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Experimental Design: c

RUN (20-40mins) POST (1-2hrs)

Intra-maze local cues, no prominent distal cues

Well trained animals: alternation task

Recording sites: visual cortex (Occl, Occ2) and CAL
Sleep states (SWS, REM, Wake, Int) classified using EMG
and hippocampal EEG
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© Nature. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: i, Daoyun, and Matthew A. Wilson. "Coordinated memory replay

in the visual cortex and hippocampus during sleep." Nature neuroscience

10, no. 1 (2007): 100-107.
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Sequence memory reactivation in hippocampus and visual cortex

Avg 01234567 Avg 012345

© Nature. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: i, Daoyun, and Matthew A. Wilson. "Coordinated memory replay

in the visual cortex and hippocampus during sleep." Nature neuroscience

10, no. 1 (2007): 100-107.

Ji and Wilson, Nature Neuroscience, 2007 37
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Reactivation occurs during activity frames correlated with
the slow oscillation
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Can we Influence memory reactivation
during sleep?
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© Nature. All rights reserved. This content is excluded from our CreativeCommons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: L Bendor, Daniel, and Matthew A. Wilson. "Biasing the content of Hippocampal
replay during sleep." Nature neuroscience 15, no. 10 (2012): 14391444
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Behavioral task design

Sound L Sound R

frequency
frequency

nosepoke
time .p time
reward reward
site . site
3.7Hz
| | * .
C -
S right N K - o
2 side =
8 3
g s
T et oo
‘% side - actual 13.3 Hz
o position

auditory cue

30

Unit #

1 sec

© Nature. All rights reserved. This content is excluded from our CreativeCommons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: L Bendor, Daniel, and Matthew A. Wilson. "Biasing the content of Hippocampal
replay during sleep." Nature neuroscience 15, no. 10 (2012): 14391444
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Bias observed in individual place cell responses
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Hippocampal activity during quiet
wakefulness

* During awake behavior, there are
periods of quiet wakefulness that have
EEG that is similar to NREM consisting
of brief bursts of activity modulated by
high frequency “ripple” oscillations.

* |s there structure to the patterns of
multiple single neuron activity during
this state?

44



Does sequence reactivation occur during quiet wakefulness?
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Memory of recent experience replayed in reverse-time order

Stopping

a : . .
g \ Position vs. time
b ; A T T | T A Hippocampal place-cell
1o O U S N B S | CR TS S T P activity vs. time
Time (s) e \~~\\~
c _ .
Reverse-time sequence replay during
. hippocampal ripples

Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Foster, David J., and Matthew A. Wilson. "Reverse replay
of behavioural sequences in hippocampal place cells during the
awake state." Nature 440, no. 7084 (2006): 680-683.. © 2006.

Foster and Wilson, Nature, 2006 46



Learning sequences of actions
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Reprasantation (prob.)

Hippocampal place-cell sequences depict
future paths to remembered goals
Brad E. Pfeiffer & David J. Foster

Nature, 2013
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Long behavioral sequences on a 10m track
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Forward Replay from A to B
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Forward Replay from A to B
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Extended replay spans multiple ripple
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Extended replay has a characteristic
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Single ripple sequences are at same scale

as theta sequences
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Overall summary

* Sequence memory can be encoded in the
hippocampus during active behavior.

e Sequence memory is subsequently replayed
during sleep in both the hippocampus and
neocortex.

* The content of reactivated memory during sleep
can be biased by external manipulation.

« Sequence memory replayed during quiet
wakefulness is associated reward information and
may serve a different role in learning than replay
during sleep.
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