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An introduction to essential Machine Learning:

eConcepts
e Algorithms
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o] ocal methods
¢ Bias-Variance and Cross Validation

* Regularization I: Linear Least Squares
* Regularization II: Kernel Least Squares

* Variable Selection: OMP
* Dimensionality Reduction: PCA

e Matlab practical session
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PART I

e].ocal methods
¢ Bias-Variance and Cross Validation

GOAL: Investigate the trade-off between stability and fitting starting
from simple machine learning approaches



The goal of supervised learning is to find an underlying input-output relation

f(@new) ~ Y,
given data.

The data, called training set, is a set of n input-output pairs,
o = {(331, y1)7 SR (x’nﬂ yn)}
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Local Methods: Nearby points have similar labels

Nearest Neighbor
Given an input z, let
|°

i’ =arg min ||T — xz;
1=1,..., n

and define the nearest neighbor (NN) estimator as

f(Z) =y

How does it work?



Plot




K-Nearest Neighbors

Consider
dy = (||z - z:*)i=s
the array of distances of a new point 7z to the input points in the training set. Let
Sz
be the above array sorted in increasing order and
I3
the corresponding vector of indices, and
Kz ={I},..., I3}
be the array of the first K entries of I;. The K-nearest neighbor estimator (KNN) is defined as,
f(z) = Z Yir s

eKx
10



Plot
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Remarks:

Generalization I: closer points should count more

Fl=\ __ Z?:l yzk<£7xz)
@) = Z:’;:l k(Z,x;) |

] M 12 /02
Gaussian k(z', z) = e I1#=217/207,

Parzen Windows

Generalization II: other metric/similarities

D
X ={0,1}F v,7) = - = 2 L za
]:1

There is one parameter controlling fit/stability
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How do we choose it?

Is there an optimal value?

Can we compute it?
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Is there an optimal value?

Ideally we would like to choose K that minimizes the expected error

ESE:v,y(y — fK(x))Q

Next: Characterize corresponding minimization problem to uncover
one of the most
fundamental aspect of machine learning.
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For the sake of simplicity we consider a regression model

yi = fo(zi) +0;, Eér=0,E6: =0 i

EsE.,(y — [k(1))* = E;: EsEy(y — fx(2))?.

_J/

V

e(K)

=1,...,n

EsEy(f.(x) = [x(2))® = (f(2) = EsEype [ (2))® + EsEypo (Bype fx (1) — [ (2))?

WV
Variance

\

K

15



Bias Variance Trade-Off

(o) + = 3 Flw)? + %

e Ky

Is there an optimal value? YES! Can we compute it?
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Not quite...

(o) + 2 S w0 + %

leK,

...enter Cross Validation

Split data: train on some, tune on some other
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Hold-Out

Cross Validation Flavors

Validation
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Cross Validation Flavors

Validation
Validation
Validation
Validation

Validation

V-Fold, (V=nis Leave-One-Out)
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End of PART I

e].ocal methods
¢ Bias-Variance and Cross Validation

Stability - Overfitting - Bias/Variance - Cross-Validation

End of the Story?



High Dimensions and Neighborhood

Distance
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Cubes and Dth-roots

Curse of dimensionality!
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PART II

e Regularization I: Linear Least Squares
e Regularization II: Kernel Least Squares

GOAL: Introduce the basic (global) regularization methods with
parametric and non parametric models

Going Global + Impose Smoothness
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Of all the principles which can be proposed for that purpose, I
think there is none more general, more exact, and more easy of
application, that of which we made use in the preceding
researches, and which consists of rendering the sum of squares

of the errors a minimum.
(Legendre 1805)

We consider the following algorithm

This image is in the public domain.

n

.1
RD 1 Z(yz- —w ) | Aw'w, A >0

. Image of Andrey Nikolayevich Tychonoff
removed due to copyright restrictions.
Please see the video.

Tikhonov ‘62  Phillips ‘62  Hoerl et al. “62
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Computations?

[ ] 1 1
Notation = —wlz))? = Z|Y, — X,w|?
=S (s — 0T = Vo~ X

1=1

2
—— XY, — X,w), and, 2w  Setting gradients...
n

...to zero (XTX, + Anl)w = XY,

OK, but what is this doing?
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Interlude: Linear Systems

o If M is a diagonal M = diag(oy,...,0p) where o; € (0,00) for all i =1,..., D, then

M~ =diag(1/o1,...,1/op), (M + X)) =diag(1/(cr +N),...,1/(6p+ N)

o It M is symmetric and positive definite, then considering the eigendecomposition
M7t =vsv?t 2 =diag(oi,...,op), VVI =1,

then
M_l _ VE—lvT) 2—1 — diag(l/@'l,...,l/O_D>a

and
(M + M)t =V =V, %, =diag(1/(c1 +N),...,1/(cp + )

25



min — Z(yZ —w'z))? + wlw, \>0.

Statistics?

(X'X, +nlw = XY,

another story that shall be told another time
(Stein '56, James and Stein '61)

. 1 - T 2 T
— i i A ; A > 0.
it 2 =), 32
D

folz) =wlz = ija:j Z(wj)Q

j=1
Shrinkage - Stein Effect- Admissible Estimator
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Plot
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Why a linear decision rule?



Dictionaries



(XIPX, + nDw=X'Y, (XIX, +nY)w=X1Y,

What About Computational Complexity?
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Complexity Vademecum

M n by p matrix and v, v’ p dimensional vectors
e viv — O(p)

o Mv' — O(np)

o MM*' — O(n?p)

o (MM*")™t— O(n°)



(XIPX, + nDw=X'Y, (XIX, +nY)w=X1Y,

What About Computational Complexity?

O(p®) + O(p*n)

What if p is much larger than n? ‘

(XIX, + D)X = X1 (X, X 4+ anD)™!

w= X" (X, X! +nl)"'Y, = Zajfcz
i=1

C



(XIX, + D)X = XX, XD+ nl)™t

w=X' (X, X+ MmI)"Y, = Zx?cz
i=1

C

Computational Complexityzw
O(n?) + O(pn?)
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(XIX, + D)X = XX, XD+ nl)™t

w=X' (X, X+ MmI)"Y, = Zaz?cz
i=1

C

Kernels w = Z r,c; = f(x

||
i M

i‘?

%

(Kp+ XD le=Y,, (K. =K(x;z;)
e the linear kernel K (z,z') = 12/,
e the polynomial kernel K (z,z") = (z¥2’ + 1),
e the Gaussian kernel K (z,2') = e~ =) /
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Plot
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things I won’t tell you about

* Reproducing Kernel Hilbert Spaces
* Gaussian Processes

*Integral Equations

e Sampling Theory/Inverse Problems

e[ oss functions- SVM, Logistic...
* Multi - task, labels, outputs, classes



End of PART II

e Regularization I: Linear Least Squares
e Regularization II: Kernel Least Squares

Regularized Least Squares - Dictionaries - Kernels
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PART III

*a) Variable Selection: OMP
eb) Dimensionality Reduction: PCA

GOAL: To introduce methods that allow to learn interpretable models
from data

38



n patients p gene expression measurements




D
folz) =wla = ijwj
j=1

Which variables are important for prediction?

or
Torture the data until they confess

Sparsity: only some of the coefficients are non zero
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Brute Force Approach

check all individual variables, then all couple, triplets.....

Jwllo = [{j | w’ # 0}



Greedy approaches/Matching Pursuit

1

(1) initialize the residual, the coefficient vector, and the index set,
(2) find the variable most correlated with the residual,

(3) update the index set to include the index of such variable,

(4) update/compute coefficient vector,

(5) update residual.
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ro =Y, ,wo=0, Iy=0. Matching Pursuit

(Mallat Zhang '93)
for: =1,...,T — 1
k=arg max a;, a;= (i, X7)7 ®
j=1,...p 7 | X712
I =1, 1 U{k}
wW; = Wi—1 + Wk, WEk = Ve
T, — T;—1 — ka
end
. rT Xj . .
® v = HZ;(leQ = argmin [|r;_; — X70|)%, ricr = X207 = |l | — 4



Basis Pursuit/Lasso

(Chen Donoho Saunders ~95, Tibshirani “96)

D
Jwlly = > |w
j=1

1 )
In — 1 Jw\ L A )
miy — ;lﬁ(y fu(z:)” + M

Problem is now convex and can be solved using convex optimization,
in particular so called proximal methods

44
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things I won’t tell you about

*Solving underdetermined systems

e Sampling theory

e Compressed Sensing

e Structured Sparsity

* From vector to matrices- from sparsity to low rank



End of PART III a)

*a) Variable Selection: OMP
eb) Dimensionality Reduction: PCA

Interpretability - Sparsity - Greedy & Convex Relaxation Approaches



PART III b)

®a) Variable Selection: OMP
*b) Dimensionality Reduction: PCA

GOAL: To introduce methods that allow to reduce data dimensionality
in absence of labels, namely unsupervised learning



Dimensionality Reduction for Data Visualization

Public domain content (from National Institute of standards and Technology).
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Dimensionality Reduction

M: X =RP -5 R"

Consider first k = 1

B |
pca min ~ ) [l (w
/ 1=1
whw =1

Computations?

E<<D,

Statistics?
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1=1
Statistics?
L; — (W ;)W — || L] — \W™ X5 ).
| (whz)wl]® = ||z — (w'z;)?
A
1 mn
- T N2
: wre%%xln;(w xz)
e max S (s - 2)?
max — w (x; — X
weSP—-1n P !




w1 max eigenvector ot C,

maX — E )2 — En
n_ ’Z: .
T < !

weSP—1
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Dimensionality Reduction
M: X =R SR’ k<D,

What about k£ = 2?

wo second eigenvector of C,

/

mn
1
max w! Cow, C, == E xzxff
weSP—1 n n

1=



M:X =R 5R" k<D,

things I won't tell you about

e Random Maps: Johnson-Linderstrauss Lemma
e Non Linear Maps: Kernel PCA, Laplacian/
Diffusion maps
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End of PART III b)

®a) Variable Selection: OMP
*b) Dimensionality Reduction: PCA

Interpretability - Sparsity - Greedy & Convex Relaxation Approaches



The End

PART IV

Image removed due to copyright restrictions. Please see the video.

*Matlab practical session

Afternoon
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