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C H A P T E R  6 

Exponentials and Logarithms 

This chapter is devoted to exponentials like 2" and 10" and above all ex. The goal is 
to understand them, differentiate them, integrate them, solve equations with them, 
and invert them (to reach the logarithm). The overwhelming importance of ex makes 
this a crucial chapter in pure and applied mathematics. 

In the traditional order of calculus books, ex waits until other applications of the . 

integral are complete. I would like to explain why it is placed earlier here. I believe 
that the equation dyldx = y has to be emphasized above techniques of integration. 
The laws of nature are expressed by drflerential equations, and at the center is ex. Its 
applications are to life sciences and physical sciences and economics and engineering 
(and more-wherever change is influenced by the present state). The model produces 
a differential equation and I want to show what calculus can do. 

The key is always bm+"= (bm)(b3. Section 6.1 applies that rule in three ways: 

1. to understand the logarithm as the exponent; 
2. to draw graphs on ordinary and semilog and log-log paper; 
3. to find derivatives. The slope of b" will use bX+*" = (bx)(bh"). 

h6.1 An Overview 

There is a good chance you have met logarithms. They turn multiplication into 
addition, which is a lot simpler. They are the basis for slide rules (not so important) 
and for graphs on log paper (very important). Logarithms are mirror images of 
exponentials-and those I know you have met. 

Start with exponentials. The numbers 10 and lo2and lo3 are basic to the decimal 
system. For completeness I also include lo0, which is "ten to the zeroth power" or 
1. The logarithms of those numbers are the exponents. The logarithms of 1 and 10 and 
100 and 1000 are 0 and 1 and 2 and 3. These are logarithms "to base 10,"because 
the powers are powers of 10. 

Question When the base changes from 10 to b, what is the logarithm of l ?  
Answer Since b0 = 1, logJ is always zero. To base b, the logarithm of bn is n. 
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Negative powers are also needed. The number 10x is positive, but its exponent x can
be negative. The first examples are 1/10 and 1/100, which are the same as 10-' and
10- 2. The logarithms are the exponents -1 and -2:

1000 = 103  and log 1000 = 3

1/1000 = 10- 3 and log 1/1000 = - 3.

Multiplying 1000 times 1/1000 gives 1 = 100. Adding logarithms gives 3 + (- 3) = 0.
Always 10m times 10" equals 10" +".In particular 103 times 102 produces five tens:

(10)(10)(10) times (10)(10) equals (10)(10)(10)(10)(10) = 105.

The law for b" times b" extends to all exponents, as in 104.6 times 10'. Furthermore
the law applies to all bases (we restrict the base to b > 0 and b - 1). In every case
multiplication of numbers is addition of exponents.

6A bm times b" equals b'", so logarithms (exponents) add
b' divided by b" equals b", so logarithms (exponents) subtract

logb(yZ) = lOgby + lOgbz and logb(Y/Z) = lOgby - lOgbz. (1)

Historical note In the days of slide rules, 1.2 and 1.3 were multiplied by sliding
one edge across to 1.2 and reading the answer under 1.3. A slide rule made in
Germany would give the third digit in 1.56. Its photograph shows the numbers on a
log scale. The distance from 1 to 2 equals the distance from 2 to 4 and from 4 to 8.
By sliding the edges, you add distances and multiply numbers.

Division goes the other way. Notice how 1000/10 = 100 matches 3 - 1 = 2. To divide
1.56 by 1.3, look back along line D for the answer 1.2.

The second figure, though smaller, is the important one. When x increases by 1, 2 x

is multiplied by 2. Adding to x multiplies y. This rule easily gives y = 1, 2, 4, 8, but
look ahead to calculus-which doesn't stay with whole numbers.

Calculus will add Ax. Then y is multiplied by 2ax. This number is near 1. If
Ax = A then a2"x  1.07-the tenth root of 2. To find the slope, we have to consider
(2 ax - 1)/Ax. The limit is near (1.07 - 1)/- = .7, but the exact number will take time.

1 1+1 1+1+1

^ ^

>

Fig. 6.1 An ancient relic (the slide rule). When exponents x add, powers 2x multiply.
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Base Change Bases other than 10 and exponents other than 1,2,3, . . . are needed 
for applications. The population of the world x years from now is predicted to grow 
by a factor close to 1.02". Certainly x does not need to be a whole number of years. 
And certainly the base 1.02 should not be 10 (or we are in real trouble). This prediction 
will be refined as we study the differential equations for growth. It can be rewritten 
to base 10 if that is preferred (but look at the exponent): 

1.02" is the same as 10('Og .02)". 

When the base changes from 1.02 to 10, the exponent is multiplied-as we now see. 
For practice, start with base b and change to base a. The logarithm to base a will 

be written "log." Everything comes from the rule that logarithm = exponent: 

base change for numbers: b = d o g b .  

Now raise both sides to the power x. You see the change in the exponent: 

bx a('0g base change for exponentials: = ,Ix. 

Finally set y = bX. Its logarithm to base b is x. Its logarithm to base a is the exponent 
on the right hand side: logay = (log,b)x. Now replace x by logby: 

base change for logarithms: log, y = (log, b) (log, y ). 

We absolutely need this ability to change the base. An example with a = 

b = 8 = Z3 g2 = (z3), = 26 log, 64 = 3 2 = (log28)(log864). 

The rule behind base changes is (am)" = am". When the mth power is raised to the 
xth power, the exponents multiply. The square of the cube is the sixth power: 

(a)(a)(a) times (a)(a)(a) equals (a)(a)(a)(a)(a)(a): (a3),=a6. 

Another base will soon be more important than 10-here are the rules for base 
changes: 

The first is the definition. The second is the xth power of the first. The third is the 
logarithm of the second (remember y is bx). An important case is y = a: 

log, a = (log, b)(logb a) = 1 so log, b = 1 /log, a. (3) 

EXAMPLE 8 = 23 means 8lI3 = 2. Then (10g28)(l0g82) = (3)(1/3) = 1. 

This completes the algebra of logarithms. The addition rules 6A came from 
(bm)(b") = bm +". The multiplication rule 68 came from (am)" = am". We still need to 
deJine b" and ax for all real numbers x. When x is a fraction, the definition is easy. 
The square root of a8 is a4 (m = 8 times x = 112). When x is not a fraction, as in 2", 
the graph suggests one way to fill in the hole. 

2 is 

We could defne 2" as the limit of 23, 231110, 23141100, . . . . As the fractions r approach 
7t, the powers 2' approach 2". This makes y = 2" into a continuous function, with the 
desired properties (2")(2") = 2"'" and (2")" = 2""-whether m and n and x are inte- 
gers or not. But the E'S and 6's of continuity are not attractive, and we eventually 
choose (in Section 6.4) a smoother approach based on integrals. 



GRAPHS OF b" AND logby 

It is time to draw graphs. In principle one graph should do the job for both functions, 
because y =bx means the same as x = logby. These are inverse functions. What one 
function does, its inverse undoes. The logarithm of g(x) = bX is x: 

In the opposite direction, the exponential of the logarithm of y is y: 
g(g - = b('08b~)= Y. (9 

This holds for every base b, and it is valuable to see b = 2 and b = 4 on the same 
graph. Figure 6.2a shows y = 2" and y = 4". Their mirror images in the 45" line give 
the logarithms to base 2 and base 4, which are in the right graph. 

When x is negative, y = bx is still positive. If the first graph is extended to the left, 
it stays above the x axis. Sketch it in with your pencil. Also extend the second graph 
down, to be the mirror image. Don't cross the vertical axis. 

Fig. 6.2 Exponentials and mirror images (logarithms). Different scales for x and y. 

There are interesting relations within the left figure. All exponentials start at 1, 
because b0 is always 1. At the height y = 16, one graph is above x = 2 (because 4' = 
16). The other graph is above x = 4 (because 24 = 16). Why does 4" in one graph equal 
2," in the other? This is the base change for powers, since 4 = 2,. 

The figure on the right shows the mirror image-the logarithm. All logarithms 
start from zero at y = 1. The graphs go down to -co at y = 0. (Roughly speaking 
2-" is zero.) Again x in one graph corresponds to 2x in the other (base change for 
logarithms). Both logarithms climb slowly, since the exponentials climb so fast. 

The number log, 10 is between 3 and 4, because 10 is between 23 and 24. The slope 
of 2" is proportional to 2"-which never happened for xn. But there are two practical 
difficulties with those graphs: 

1. 2" and 4" increase too fast. The curves turn virtually straight up. 
2. The most important fact about Ab" is the value of 6-and the base 

doesn't stand out in the graph. 

There is also another point. In many problems we don't know the function y = 
f(x). We are looking for it! All we have are measured values of y (with errors mixed 
in). When the values are plotted on a graph, we want to discover f(x). 

Fortunately there is a solution. Scale the y axis dfferently. On ordinary graphs, 
each unit upward adds a fixed amount to y. On a log scale each unit multiplies y by 
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aJixed amount. The step from y = 1 to y = 2 is the same length as the step from 3 to 
6 or 10 to 20. 

On a log scale, y = 11 is not halfway between 10 and 12. And y = 0 is not there at 
all. Each step down divides by a fixed amount-we never reach zero. This is com- 
pletely satisfactory for Abx, which also never reaches zero. 

Figure 6.3 is on semilog paper (also known as log-linear), with an ordinary x axis. 
The graph of y = Abx is a straight line. To see why, take logarithms of that equation: 

log y = log A + x log b. (6) 

The relation between x and log y is linear. It is really log y that is plotted, so the graph 
is straight. The markings on the y axis allow you to enter y without looking up its 
logarithm-you get an ordinary graph of log y against x. 

Figure 6.3 shows two examples. One graph is an exact plot of y = 2 loX. It goes 
upward with slope 1, because a unit across has the same length as multiplication by 
10 going up. lox has slope 1 and 10("gb)" (which is bx) will have slope log b. The 
crucial number log b can be measured directly as the slope. 

Fig. 6.3 2 = 10" and 4 10-"I2 on semilog paper. Fig. 6.4 Graphs of  AX^ on log-log paper. 

The second graph in Figure 6.3 is more typical of actual practice, in which we start 
with measurements and look for f(x) .  Here are the data points: 

We don't know in advance whether these values fit the model y = Abx. The graph is 
strong evidence that they do. The points lie close to a line with negative slope- 
indicating log b < 0 and b < 1. The slope down is half of the earlier slope up, so the 
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model is consistent with 

y =  Ado-X12 or log y= log  A- fx .  (7) 

When x reaches 2, y drops by a factor of 10. At x = 0 we see A z 4. 
Another model-a power y = Axk instead of an exponential-also stands out with 

logarithmic scaling. This time we use log-log paper, with both axes scaled. The 
logarithm of y = Axk gives a linear relation between log y and log x: 

log y = log A + k log x. (8) 

The exponent k becomes the slope on log-log paper. The base b makes no difference. 
We just measure the slope, and a straight line is a lot more attractive than a power 
curve. 

The graphs in Figure 6.4 have slopes 3 and 4 and -1. They represent Ax3 and 
A& and Alx. To find the A's, look at one point on the line. At x = 4 the height is 
8, so adjust the A's to make this happen: The functions are x3/8 and 4& and 32/x. 
On semilog paper those graphs would not be straight! 

You can buy log paper or create it with computer graphics. 

THE DERIVATIVES OF y = bxAND x= log,y 

This is a calculus book. We have to ask about slopes. The algebra of exponents is 
done, the rules are set, and on log paper the graphs are straight. Now come limits. 

The central question is the derivative. What is dyldx when y = bx? What is dxldy 
when x is the logarithm logby? Thpse questions are closely related, because bx and 
logby are inverse functions. If one slope can be found, the other is known from 
dxldy = l/(dy/dx). The problem is to find one of them, and the exponential comes 
first. 

You will now see that those questions have quick (and beautiful) answers, except 
for a mysterious constant. There is a multiplying factor c which needs more time. I 
think it is worth separating out the part that can be done immediately, leaving c in 
dyldx and llc in dxldy. Then Section 6.2 discovers c by studying the special number 
called e (but c # e). 

6C The derivative of bX is a multiple ebx. The number c depends on the 
base b.I I 


The product and power and chain rules do not yield this derivative. We are pushed 
all the way back to the original definition, the limit of AylAx: 

Key idea: Split bx+h into bX times bh. Then the crucial quantity bx factors out. More 
than that, bx comes outside the limit because it does not depend on h. The remaining 
limit, inside the brackets, is the number c that we don't yet know: 

This equation is central to the whole chapter: dyldx equals cbx which equals cy. The 
rate of change of y is proportional to y. The slope increases in the same way that bx 
increases (except for the factor c). A typical example is money in a bank, where 
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interest is proportional to the principal. The rich get richer, and the poor get slightly 
richer. We will come back to compound interest, and identify b and c. 

The inverse function is x = logby. Now the unknown factor is l/c: 

I 6D The slope of logby is llcy with the same e (depending on b). I 
Proof If dy/dx = cbx then dxldy = l/cbx = llcy. (1 1) 

That proof was like a Russian toast, powerful but too quick! We go more carefully: 

f(bx) = x (logarithm of exponential) 

f '(bx)(cbx) = 1 (x derivative by chain rule) 

f '(bx) = l/cbx (divide by cbx) 

f '(y) = l/cy (identify bx as y) 

The logarithm gives another way to find c. From its slope we can discover l/c. This 
is the way that finally works (next section). 

- 1  0 1 

6.5 The slope of 2" is about .7 2". The slope of log2y is about 11.7Fig. ~. 

Final remark It is extremely satisfying to meet an f(y) whose derivative is llcy. 
At last the " - 1 power" has an antiderivative. Remember that j'xndx = xn+'/(n + 1) 
is a failure when n = - 1. The derivative of x0 (a constant) does not produce x-'. 
We had no integral for x - ' , and the logarithm fills that gap. If y is replaced by x or t 
(all dummy variables) then 

d 1 d 1 
- log,x=- and -log,t=-.  
dx cx dt c t 

The base b can be chosen so that c = 1. Then the derivative is llx. This final touch 
comes from the magic choice b = e-the highlight of Section 6.2. 

6.1 EXERCISES 

Read-through questions On ordinary paper the graph of y = I is a straight line. 
Its slope is m . On semilog paper the graph of y = n 

In lo4 = 10,000, the exponent 4 is the a of 10,000. The is a straight line. Its slope is 0 . On log-log paper the 
base is b = b . The logarithm of 10" times 10" is c . graph of y = p is a straight line. Its slope is 9 . 
The logarithm of 10m/lOn is d . The logarithm of 10,000" 

The slope of y b" is dyldx = r , where c depends on is e . If = y = bX then x = f . Here x is any number, 
b. The number c is the limit as h -, 0 of s . Since x s . = and y is always 

k logby is the inverse, (dx/dy)(dy/dx) = t . Knowing 
A base change gives b = a - and b" = a -. Then dyldx = cb" yields dxldy = u . Substituting b" for y, the 

8' is 2". In other words log2 y is i times log8y. When slope of log,?; is v . With a change of letters, the slope of 
y = 2 it follows that log28 times log82 equals k . log,x is w . 
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Problems 1-10 use the rules for logarithms. 

1 Find these logarithms (or exponents): 

(a)log232 (b) logz(1/32) ( 4  log32(1/32) 

(d) (e) log, dl0-) (f) log2(l0g2 16) 

2 Without a calculator find the values of 
(a)310g35 (b) 3210835 

(c) log, 05 + log1o2 (d) (l0g3~)(logbg) 
(e) 10510-4103 (f) log256 -log27 

3 Sketch y = 2-" and y = g4") from -1 to 1 on the same 
graph. Put their mirror images x = -log2y and x = log42y 
on a second graph. 

4 Following Figure 6.2 sketch the graphs of y = (iy and x = 
logl12y. What are loglI22 and loglI24? 

5 Compute without a computer: 

(a)log23 + log23 (b) log2(i)10 
(c) log,010040 ( 4  (log 104(loge 10) 
(e) 223/(22)3 (f logdlle) 

6 Solve the following equations for x: 

(a)log10(10")= 7 (b) log 4x -log 4 = log 3 
(c) logXlO= 2 (d) 10g2(l/x) ,=2 
(e) log x + log x = log 8 (f) logx(xx) = 5 

7 The logarithm of y = xn is logby = . 
*8 Prove that (1ogba)(logdc) = (logda)(logbc). 

9 2'' is close to lo3 (1024 versus 1000). If they were equal 
then log,lO would be . Also logl02 would be 

instead of 0.301. 

10 The number 21°00 has approximately how many (decimal) 
digits? 

Questions 11-19 are about the graphs of y = bx and x = logby. 

11 By hand draw the axes for semilog paper and the graphs 
of y = l.lX and y = lq1.1)". 

12 Display a set of axes on which the graph of y = loglox is 
a straight line. What other equations give straight lines on 
those axes? 

13 When noise is measured in decibels, amplifying by a factor 
A increases the decibel level by 10 log A. If a whisper is 20db 
and a shout is 70db then 10 log A = 50 and A = . 

14 Draw semilog graphs of y = lo1-' and y = ~fi)". 
15 The Richter scale measures earthquakes by loglo(I/Io) = 
R. What is R for the standard earthquake of intensity I,? If 
the 1989 San Francisco earthquake measured R = 7, how did 
its intensity I compare to I,? The 1906 San Francisco quake 
had R = 8.3. The record quake was four times as intense with 
R =  . 
16 The frequency of A above middle C is 440/second. The 
frequency of the next higher A is . Since 2'/l2 x 1.5, 
the note with frequency 660/sec is 

17 Draw your own semilog paper and plot the data 

Estimate A and b in y = Abx. 

18 Sketch log-log graphs of y = x2 and y = &. 
19 On log-log paper, printed or homemade, plot y = 4, 11, 
21, 32, 45 at x = 1, 2, 3, 4, 5. Estimate A and k in y = AX^. 

Questions 20-29 are about the derivative dyldx = cbx. 

20 g(x) = bx has slope g' = cg. Apply the chain rule to 
g(f(y))= y to prove that dfldy = llcy. 

21 If the slope of log x is llcx, find the slopes of log (2x) and 
log (x2) and log (2"). 

22 What is the equation (including c) for the tangent line to 
y = 10" at x = O? Find also the equation at x = 1. 

23 What is the equation for the tangent line to x = log, ,y at 
y = l? Find also the equation at y = 10. 

24 With b = 10, the slope of 10" is c10". Use a calculator for 
small h to estimate c = lim (loh - l)/h. 

25 The unknown constant in the slope of y = (.l)" is 
L =lim (. l h- l)/h. (a) Estimate L by choosing a small h. 
(b) Change h to -h to show that L = -c from Problem 24. 

26 Find a base b for which (bh - l)/h x 1. Use h = 114 by hand 
or h = 1/10 and 1/100 by calculator. 

27 Find the second derivative of y = bx and also of x = logby. 

28 Show that C = lim (lWh - l)/h is twice as large as c = 
lim (10" - l)/h. (Replace the last h's by 2h.) 

29 In 28, the limit for b = 100 is twice as large as for b = 10. 
So c probably involves the of b. 
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6.2 The Exponential eX 

The last section discussed bx and logby. The base b was arbitrary-it could be 2 or 6 
or 9.3 or any positive number except 1. But in practice, only a few bases are used. 
I have never met a logarithm to base 6 or 9.3. Realistically there are two leading 
candidates for b, and 10 is one of them. This section is about the other one, which is 
an extremely remarkable number. This number is not seen in arithmetic or algebra 
or geometry, where it looks totally clumsy and out of place. In calculus it comes into 
its own. 

The number is e. That symbol was chosen by Euler (initially in a fit of selfishness, 
but he was a wonderful mathematician). It is the base of the natural logarithm. 
It also controls the exponential ex, which is much more important than In x. 
Euler also chose 7c to stand for perimeter-anyway, our first goal is to find e. 

Remember that the derivatives of bx and logby include a constant c that depends 
on b. Equations (10) and (1 1) in the previous section were 

d d 1 - b" = cb" and - logby = -. (1) dx d~ CY 

At x = 0, the graph of bx starts from b0 = 1. The slope is c. At y = 1, the graph of 
logby starts from logbl = 0. The logarithm has slope llc. With the right choice of the 
base b those slopes will equal 1 (because c will equal 1). 

For y = 2" the slope c is near .7. We already tried Ax = .1 and found Ay z -07. The 
base has to be larger than 2, for a starting slope of c = 1. 

We begin with a direct computation of the slope of logby at y = 1: 

1 1 
- = slope at 1 = lim - [logb(l h) - logbl] = lim logb[(l h)'lh]. 
C h + O  

+ + 
h h-0  

Always logbl = 0. The fraction in the middle is logb(l + h) times the number l/h. This 
number can go up into the exponent, and it did. 

The quantity (1 + h)'Ih is unusual, to put it mildly. As h + 0, the number 1 + h is 
approaching 1. At the same time, l/h is approaching infinity. In the limit we have 
1". But that expression is meaningless (like 010). Everything depends on the 
balance bet.ween "nearly 1" and "nearly GO." This balance produces the extraordinary 
number e: 

DEFINITION The number e is equal to lim (1 +'h)'lh. Equivalently e = lim 
h + O  n+ co 

Before computing e, look again at the slope llc. At the end of equation (2) is the 
logarithm of e: 

When the base is b = e, the slope is logee = 1. That base e has c = 1 as desired 

1 
The derivative of ex is 1 ex and the derivative of log,y is - 

1 my' (4) 

This is why the base e is all-important in calculus. It makes c = 1. 
To compute the actual number e from (1 + h)'lh, choose h = 1, 1/10, 1/100, . . . . Then 

the exponents l/h are n = 1, 10, 100, . . . . (All limits and derivatives will become official 
in Section 6.4.) The table shows (1 + h)lih approaching e as h -, 0 and n -, oo: 
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The last column is converging to e (not quickly). There is an infinite series that 
converges much faster. We know 125,000 digits of e (and a billion digits of n). There 
are no definite patterns, although you might think so from the first sixteen digits: 

e = 2.7 1828 1828 45 90 45 .-. (and lle z .37). 

The powers of e produce y = ex. At x = 2.3 and 5, we are close to y = 10 and 150. 

The logarithm is the inverse function. The logarithms of 150 and 10, to the base e, 
are close to x = 5 and x = 2.3. There is a special name for this logarithm--the natural 
logarithm. There is also a special notation "ln" to show that the base is e: 

In y means the same as log,y. The natural logarithm is the exponent in ex =y. 

The notation In y (or In x-it is the function that matters, not the variable) is standard 
in calculus courses. After calculus, the base is generally assumed to be e. In most of 
science and engineering, the natural logarithm is the automatic choice. The symbol 
"exp (x)" means ex, and the truth is that the symbol "log x" generally means In x. 
Base e is understood even without the letters In. But in any case of doubt-on a 
calculator key for example-the symbol "ln x" emphasizes that the base is e. 

THE DERIVATIVES OF ex AND In x 

Come back to derivatives and slopes. The derivative of bx is cbx, and the derivative 
of log, y is llcy. If b = e then c = 1 .  For all bases, equation (3) is llc = logbe. 
This gives c-the slope of bx at x = 0: 

c = In b is the mysterious constant that was not available earlier. The slope of 2" is 
In 2 times 2". The slope of ex is In e times ex (but In e = 1). We have the derivatives 
on which this chapter depends: 

6F The derivatives of ex and In y are ex and 1 fy.  For other bases 

d d 1 
-bx = (In b)bx and - logby= --- (6)dx d~ (in b ) ~ '  

To make clear that those derivatives come from the functions (and not at all from 
the dummy variables), we rewrite them using t and x: 

d d 1-e'=ef and - l n x = - .  
dt dx x 
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Remark on slopes at x = 0: It would be satisfying to see directly that the slope of 2" 
is below 1, and the slope of 4" is above 1. Quick proof: e is between 2 and 4. 
But the idea is to see the slopes graphically. This is a small puzzle, which is fun to 
solve but can be skipped. 

2" rises from 1 at x = 0 to 2 at x = 1. On that interval its average slope is 1. Its 
slope at the beginning is smaller than average, so it must be less than 1-as desired. 
On the other hand 4" rises from :at x = - to 1 at x = 0. Again the average slope 
is L/L = 1. Since x = 0 comes at the end of this new interval, the slope of 4" at that , , 
point exceeds 1. Somewhere between 2" and 4" is ex, which starts out with slope 1. 

This is the graphical approach to e. There is also the infinite series, and a fifth 
definition through integrals which is written here for the record: 

1. e is the number such that ex has slope 1 at x = 0 

2. e is the base for which In y = log,y has slope 1 at y = 1 

3. e is the limit of ( 1 + - as n -, co:r 

5. the area 5; x - l  dx equals 1. 

The connections between 1, 2, and 3 have been made. The slopes are 1 when e is the 
limit of (1 + lln)". Multiplying this out wlll lead to 4, the infinite series in Section 6.6. 
The official definition of in x comes from 1 dxlx, and then 5 says that in e = 1. This 
approach to e (Section 6.4) seems less intuitive than the others. 

Figure 6.6b shows the graph of e-". It is the mirror image of ex across the vertical 
axis. Their product is eXe-"= 1. Where ex grows exponentially, e-" decays 
exponentially-or it grows as x approaches - co. Their growth and decay are faster 
than any power of x. Exponential growth is more rapid than polynomial growth, so 
that e"/xngoes to infinity (Problem 59). It is the fact that ex has slope ex which keeps 
the function climbing so fast. 

Fig. 6.6 ex grows between 2" and 4". Decay of e-", faster decay of e-"'I2. 

The other curve is y = e-"'I2. This is the famous "bell-shaped curve" of probability 
theory. After dividing by fi,it gives the normal distribution, which applies to so 
many averages and so many experiments. The Gallup Poll will be an example in 
Section 8.4. The curve is symmetric around its mean value x = 0, since changing x to 
-x has no effect on x2. 

About two thirds of the area under this curve is between x = - 1 and x = 1. If you 
pick points at random below the graph, 213 of all samples are expected in that 
interval. The points x = - 2 and x = 2 are "two standard deviations" from the center, 
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enclosing 95% of the area. There is only a 5% chance of landing beyond. The decay
is even faster than an ordinary exponential, because -ix2 has replaced x.

THE DERIVATIVES OF eX AND eu x)

The slope of ex is ex. This opens up a whole world of functions that calculus can deal
with. The chain rule gives the slope of e3 x and esinx and every e"(x):

6G The derivative of euix) is eu(x) times du/dx. (8)

Special case u = cx: The derivative of e" is cecx. (9)

EXAMPLE 1 The derivative of e3 x is 3e3 x (here c = 3). The derivative of esinx is
esin x cos x (here u = sin x). The derivative of f(u(x)) is df/du times du/dx. Here
f= e" so df/du = e". The chain rule demands that second factor du/dx.

EXAMPLE 2 e(In 2 2)x is the same as 2x. Its derivative is In 2 times 2x. The chain rule
rediscovers our constant c = In 2. In the slope of bx it rediscovers the factor c = In b.

Generally ecx is preferred to the original bx. The derivative just brings down the
constant c. It is better to agree on e as the base, and put all complications (like c =
In b) up in the exponent. The second derivative of ecx is c2ecx.

EXAMPLE 3 The derivative of e-x2/2 is - xe - 2/ 2 
x (here u = - x2/2 so du/dx= - x).

EXAMPLE 4 The second derivative off= e - x2/2, by the chain rule and product rule,
is

f" (-1) - 2/2 2 2 2 2 -
= e x + ( x) e-x / = ( - l)e 2/2x . (10)

Notice how the exponential survives. With every derivative it is multiplied by more
factors, but it is still there to dominate growth or decay. The points of inflection,
where the bell-shaped curve hasf" = 0 in equation (10), are x = 1 and x = - 1.

EXAMPLE 5 (u = n In x). Since en" n is x" in disguise, its slope must be nx - 1:

slope = e""nx (n In x)= x(n) = nx (11)

This slope is correct for all n, integer or not. Chapter 2 produced 3x2 and 4x3 from
the binomial theorem. Now nx"- 1 comes from In and exp and the chain rule.

EXAMPLE 6 An extreme case is xx = (eInx)x. Here u = x In x and we need du/dx:

d (x) = exnxIn 
dx 

x+ x- 
x)

= xx(ln x + 1).

INTEGRALS OF e" AND e" du/dx

The integral of ex is ex. The integral of ecx is not ecx. The derivative multiplies by c so
the integral divides by c. The integral of ecx is ecx/c (plus a constant).

EXAMPLES e2xdx - e2x + C bxdx = + C
2 f Inb
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The first one has c = 2. The second has c = In b-remember again that bx = e('nb)x. 
The integral divides by In b. In the third one, e3("+')is e3" times the number e3 and 
that number is carried along. Or more likely we see e3'"+'I as eu.The missing du/dx = 

3 is fixed by dividing by 3. The last example fails because duldx is not there. We 
cannot integrate without duldx: 

Here are three examples with du/dx and one without it: 

The first is a pure eudu. So is the second. The third has u = and du/dx = l/2&, 
so only the factor 2 had to be fixed. The fourth example does not belong with the 
others. It is the integral of du/u2, not the integral of eudu. I don't know any way to 
tell you which substitution is best-except that the complicated part is 1 + ex and it 
is natural to substitute u. If it works, good. 

Without an extra ex for duldx, the integral 5 dx/( l  + looks bad. But u = 1 + ex 
is still worth trying. It has du = exdx = (u- 1)dx: 

That last step is "partial fractions.'' The integral splits into simpler pieces (explained 
in Section 7.4) and we integrate each piece. Here are three other integrals: 

The first can change to -5 eudu/u2,which is not much better. (It is just as impossible.) 
The second is actually Judu ,  but I prefer a split: 54ex and 5e2" are safer to do 
separately. The third is 5 (4e-" + l)dx,  which also separates. The exercises offer prac- 
tice in reaching eudu/dx - ready to be integrated. 

Warning about dejinite integrals When the lower limit is x = 0, there is a natural 
tendency to expect f(0) = 0-in which case the lower limit contributes nothing. For 
a power f = x3 that is true. For an exponential f = e3" it is definitely not true, because 
f(0) = 1: 
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6.2 EXERCISES 
Read-through questions 

The number e is approximately a . It is the limit of (1+ h) 
to the power b . This gives l.O1lOOwhen h = c . An 
equivalent form is e = lim ( d )". 

When the base is b = e, the constant c in Section 6.1 is e . 
Therefore the derivative of y = exis dyldx = f .The deriv- 
ative of x = logey is dxldy = g . The slopes at x =0 and 
y = 1 are both h . The notation for log,y is I ,which 
is the I logarithm of y. 

The constant c in the slope of bxis c = k .The function 
bx can be rewritten as I . Its derivative is m . The 
derivative of eU(")is n . The derivative of ednXis 0 . 
The derivative of ecxbrings down a factor P . 

The integral of ex is q . The integral of ecxis r . 
The integral of eU(")du/dx s . In general the integral of is 
eU(")by itself is t to find. 

Find the derivatives of the functions in 1-18. 

17 esinx + sin ex 18 x- ' I x  (which is e-) 

19 The difference between e and (1+ l/n)" is approximately 
Celn. Subtract the calculated values for n = 10, 100, 1000 from 
2.7183 to discover the number C. 

20 By algebra or a calculator find the limits of ( 1  + l/n)2nand 
(1+ l / n ) 4  

21 The limit of (11/10)1°, (101/100)100, ... is e. So the limit of 
(10111)1°, (100/101)100,... is . So the limit of 
(lO/ll)ll ,  (100/101)101,... is . The last sequence is 
(1- l/ny. 

22 Compare the number of correct decimals of e for 
(l.OO1)lOOO and if possible (l.OOOO1)lOOOOO.and (l.OOO1)lOOOO 
Which power n would give all the decimals in 2.71828? 

23 The function y =ex solves dyldx =y. Approximate this 
equation by A Y A x  = Y; which is Y(x+ h)- Y(x)=h Y(x). 
With h =& find Y(h)after one step starting from Y(0)= 1. 
What is Y ( l )after ten steps? 

24 The function that solves dyldx = -y starting from y = 1 
at x =0 is . Approximate by Y(x+ h)- Y(x)= 
-hY(x).If h = what is Y(h)after one step and what is Y ( l )  
after four steps? 

25 Invent three functions f, g, h such that for x >  10 
(1 + llx)" <f (x)< e" <g(x)<e2" < h(x)<xx. 

26 Graph ex and # at x = -2, -1, 0, 1 ,  2. Another form 
o f f i i s  . 

Find antiderivatives for the functions in 27-36. 

33 xeX2+ xe-x2 34 (sin x)ecO" + (cos x)e"'"" 

35 @+(ex)' 36 xe" (trial and error) 

37 Compare e-" with e-X2.Which one decreases faster near 
x =O? Where do the graphs meet again? When is the ratio of 
e-x2to e-X less than 1/100? 

38 Compare ex with xX:Where do the graphs meet? What 
are their slopes at that point? Divide xx by ex and show that 
the ratio approaches infinity. 

39 Find the tangent line to y = ex at x = a. From which point 
on the graph does the tangent line pass through the origin? 

40 By comparing slopes, prove that if x > 0 then 
(a)ex> 1 + x  (b)e-"> 1-x .  

41 Find the minimum value of y =xx for x >0.Show from 
dZy/dx2that the curve is concave upward. 

42 Find the slope of y = x1lXand the point where dy/dx =0. 
Check d2y/dx2to show that the maximum of xllxis 

43 If dyldx = y find the derivative of e-"y by the product 
rule. Deduce that y(x)= Cex for some constant C. 

44 Prove that xe =ex has only one positive solution. 

Evaluate the integrals in 45-54. With infinite limits, 49-50 are 
"improper." 

46 Jb" sin x ecoSx dx 

48 S l2-. dx 

50 J; xe-.. dx 
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1: 1'' 

58 With electronic help graph the function (1 + llx)". What 
are its asymptotes? Why? 

59 This exercise shows that F(x) = x"/ex -, 0 as x + m. 
53 2sinx cos x dx 54 (1 -ex)'' ex dx (a) Find dF/dx. Notice that F(x) decreases for x > n > 0. 

The maximum of xn/e", at x = n, is nn/en. 
55 Integrate the integrals that can be integrated: (b) F(2x) = (2x)"/ezx = 2"xn/eX ex < 2"n"/en ex. 

Deduce that F(2x) + 0 as x + bo. Thus F(x) + 0. 

60 With n = 6, graph F(x) = x6/ex on a calculator or com- 
puter. Estimate its maximum. Estimate x when you reach 
F(x) = 1. Estimate x when you reach F(x) = 4. 
61 Stirling's formula says that n! z @ JZn. Use it to esti- 

56 Find a function that solves yl(x) = 5y(x) with y(0) = 2. mate 66/e6 to the nearest whole number. Is it correct? How 
many decimal digits in lo!? 57 Find a function that solves yl(x) = l/y(x) with y(0) = 2. 
62 x6/ex -, 0 is also proved by l'H6pital's rule (at x = m): 

lim x6/ex = lim 6xs/ex = fill this in = 0. 

6.3 Growth and Decay in Science and Economics 

The derivative of y = e" has taken time and effort. The result was y' = cecx, which 
means that y' = cy. That computation brought others with it, virtually for free-the 
derivatives of bx and xx  and eu(x). But I want to stay with y' = cy-which is the most 
important differential equatibn in applied mathematics. 

Compare y' = x with y' = y. The first only asks for an antiderivative of x .  We quickly 
find y = i x 2  + C. The second has dyldx equal to y itself-which we rewrite as dy/y = 
dx.  The integral is in y = x + C. Then y itself is exec. Notice that the first solution is 
$x2 plus a constant, and the second solution is ex times a constant. 

There is a way to graph slope x versus slope y. Figure 6.7 shows "tangent arrows," 
which give the slope at each x and y.  For parabolas, the arrows grow steeper as x 

1 2 1 

Fig. 6.7 The slopes are y' = x and y' = y. The solution curves fit those slopes. 
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grows-because y' = slope = x. For exponentials, the arrows grow steeper as y
grows-the equation is y'= slope = y. Now the arrows are connected by y = Aex.
A differential equation gives afield of arrows (slopes). Its solution is a curve that stays
tangent to the arrows - then the curve has the right slope.

A field of arrows can show many solutions at once (this comes in a differential
equations course). Usually a single Yo is not sacred. To understand the equation we
start from many yo-on the left the parabolas stay parallel, on the right the heights
stay proportional. For y' = - y all solution curves go to zero.

From y' = y it is a short step to y' = cy. To make c appear in the derivative, put c
into the exponent. The derivative of y = ecx is cecx, which is c times y. We have reached
the key equation, which comes with an initial condition-a starting value yo:

dy/dt = cy with y = Yo at t = 0. (1)

A small change: x has switched to t. In most applications time is the natural variable,
rather than space. The factor c becomes the "growth rate" or "decay rate"-and ecx
converts to ect.

The last step is to match the initial condition. The problem requires y = Yo at
t = 0. Our ec' starts from ecO = 1. The constant of integration is needed now-the
solutions are y = Ae". By choosing A = Yo, we match the initial condition and solve
equation (1). The formula to remember is yoec'.

61 The exponential law y = yoec' solves y' = cy starting from yo.

The rate of growth or decay is c. May I call your attention to a basic fact? The
formula yoec' contains three quantities Yo, c, t. If two of them are given, plus one
additional piece of information, the third is determined. Many applications have one
of these three forms: find t, find c, find yo.

1. Find the doubling time T if c = 1/10. At that time yoecT equals 2yo:

In 2 .7
e T = 2 yields cT= In 2 so that T= I --. (2)

c .1

The question asks for an exponent T The answer involves logarithms. If a cell grows
at a continuous rate of c = 10% per day, it takes about .7/.1 = 7 days to double in
size. (Note that .7 is close to In 2.) If a savings account earns 10% continuous interest,
it doubles in 7 years.

In this problem we knew c. In the next problem we know T

2. Find the decay constant c for carbon-14 if y = ½yo in T= 5568 years.

ecr = 4 yields cT= In I so that c (In 5)/5568. (3)

After the half-life T= 5568, the factor ecT equals 4. Now c is negative (In = - In 2).
Question 1 was about growth. Question 2 was about decay. Both answers found

ecT as the ratio y(T)/y(O). Then cT is its logarithm. Note how c sticks to T.
T has the units of time, c has the units of "1/time."

Main point: The doubling time is (In 2)/c, because cT= In 2. The time to multiply
by e is 1/c. The time to multiply by 10 is (In 10)/c. The time to divide by e is - 1/c,
when a negative c brings decay.

3. Find the initial value Yo if c = 2 and y(l) = 5:

y(t) = yoec' yields Yo = y(t)e -
c = 5e-2
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(1.05 1 3)20 
(1 .05l2O 

2 

simple interest .
f 
c T = l n 2  5 10 15 20 years 

Fig. 6.8 Growth (c  >0) and decay (c <0). Doubling time T =(In 2)lc. Future value at 5%. 

All we do is run the process backward. Start from 5 and go back to yo. With time 
reversed, ect becomes e-". The product of e2 and e-2 is 1-growth forward and 
decay backward. 

Equally important is T+ t. Go forward to time Tand go on to T + t: 
y(T+ t) is yoec(T+t) which is (yoecT)ect. (4) 

Every step t, at the start or later, multiplies by the same ect. This uses the fundamental 
property of exponentials, that eT+' = eT et. 

EXAMPLE 1 Population growth from birth rate b and death rate d (both constant): 

dyldt = by - dy = cy (the net rate is c = b - d). 

The population in this model is yoect = yoebte-dt. It grows when b > d (which makes 
c > 0). One estimate of the growth rate is c = 0.02/year: 

In2 .7
The earth's population doubles in about T= -x -= 35 years. 

c .02 

First comment: We predict the future based on c. We count the past population 
to find c. Changes in c are a serious problem for this model. 

Second comment: yoect is not a whole number. You may prefer to think of bacteria 
instead of people. (This section begins a major application of mathematics to economics 
and the life sciences.) Malthus based his theory of human population on this equation 
y' = cy-and with large numbers a fraction of a person doesn't matter so much. To 
use calculus we go from discrete to continuous. The theory must fail when t is very 
large, since populations cannot grow exponentially forever. Section 6.5 introduces the 
logistic equation y' = cy - by2, with a competition term -by2 to slow the growth. 

Third comment: The dimensions of b, c, d are "l/time." The dictionary gives birth 
rate = number of births per person in a unit of time. It is a relative rate-people 
divided by people and time. The product ct is dimensionless and ect makes sense (also 
dimensionless). Some texts replace c by 1- (lambda). Then 1/A is the growth time or 
decay time or drug elimination time or diffusion time. 

EXAMPLE 2 Radioactive dating A gram of charcoal from the cave paintings in 
France gives 0.97 disintegrations per minute. A gram of living wood gives 6.68 disin- 
tegrations per minute. Find the age of those Lascaux paintings. 

The charcoal stopped adding radiocarbon when it was burned (at t = 0). The 
amount has decayed to yoect. In living wood this amount is still yo, because cosmic 
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rays maintain the balance. Their ratio is ect= 0.97/6.68. Knowing the decay rate c 
from Question 2 above, we know the present time t: 

5568 0.97
ln (~3ct = yields t = -in - = 14,400 years.

- .7 (6.68) 

Here is a related problem-the age of uranium. Right now there is 140 times as much 
U-238 as U-235. Nearly equal amounts were created, with half-lives of (4.5)109 and 
(0.7)109 years. Question: How long since uranium was created? Answer: Find t by 
sybstituting c = (In $)/(4.5)109and C = (ln ;)/(0.7)109: 

In 140
ect/ect=140 * ct - Ct = In 140 =. t = --- 6(109) years.

c - C  

EXAMPLE 3 Calculus in Economics: price inflation and the value of money 

We begin with two inflation rates - a continuous rate and an annual rate. For the 
price change Ay over a year, use the annual rate: 

Ay = (annual rate) times (y) times (At). (5) 

Calculus applies the continuous rate to each instant dt. The price change is dy:
k 

dy = (continuous rate) times (y) times (dt). (6) 

Dividing by dt, this is a differential equation for the price: 

dyldt = (continuous rate) times (y) = .05y. 

The solution is yoe.05'.Set t = 1. Then emo5= 1.0513 and the annual rate is 5.13%. 

When you ask a bank what interest they pay, they give both rates: 8% and 8.33%. 
The higher one they call the "effective rate." It comes from compounding (and depends 
how often they do it). If the compounding is continuous, every dt brings an increase 
of dy-and eeo8is near 1.0833. 

Section 6.6 returns to compound interest. The interval drops from a month to a 
day to a second. That leads to (1 + lln)", and in the limit to e. Here we compute the 
effect of 5% continuous interest: 

Future value A dollar now has the same value as esoSTdollars in T years. 

Present value A dollar in T years has the same value as e--OSTdollars now. 
Doubling time Prices double (emosT= 2) in T= In 21.05 x 14 years. 

With no compounding, the doubling time is 20 years. Simple interest adds on 20 
times 5% = 100%. With continuous compounding the time is reduced by the factor 
In 2 z -7, regardless of the interest rate. 

EXAMPLE 4 In 1626 the Indians sold Manhattan for $24. Our calculations indicate 
that they knew what they were doing. Assuming 8% compound interest, the original 
$24 is multiplied by e.08'. After t = 365 years the multiplier is e29.2and the $24 has 
grown to 115 trillion dollars. With that much money they could buy back the land 
and pay off the national debt. 

This seems farfetched. Possibly there is a big flaw in the model. It is absolutely 
true that Ben Franklin left money to Boston and Philadelphia, to be invested for 200 
years. In 1990 it yielded millions (not trillions, that takes longer). Our next step is a 
new model. 
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Question How can you estimate e2'm2 with a $24 calculator (log but not In)? 
Answer Multiply 29.2 by loglo e = .434 to get 12.7. This is the exponent to base 10. 
After that base change, we have or more than a trillion. 

GROWTH OR DECAY WlTH A SOURCE TERM 

The equation y' = y will be given a new term. Up to now, all growth or decay has 
started from yo. No deposit or withdrawal was made later. The investment grew by 
itself-a pure exponential. The new term s allows you to add or subtract from the 
account. It is a "source"-or a "sink" if s is negative. The source s = 5 adds 5dt, 
proportional to dt but not to y: 

Constant source: dyldt = y + 5 starting from y = yo. 

Notice y on both sides! My first guess y = et+' failed completely. Its derivative is et+' 
again, which is not y + 5. The class suggested y = et + 5t. But its derivative et + 5 is 
still not y + 5. We tried other ways to produce 5 in dyldt. This idea is doomed to 
failure. Finally we thought of y = Aet - 5. That has y' = Aet = y + 5 as required. 

Important: A is not yo. Set t = 0 to find yo = A - 5. The source contributes 5et - 5: 

The solution is (yo+ 5)e' - 5. That is the same as yOef+ 5(et- 1). 

s = 5 multiplies the growth term ef - 1 that starts at zero. yoef grows as before. 

EXAMPLE 5 dyldt = -y + 5 has y = (yo- 5)e-' + 5. This is y0e-' + 5(1 - e-'). 7 ,lOet-5 

That final term from the soul-ce is still positive. The other term yoe-' decays to zero. 
The limit as t + is y, = 5 .  A negative c leads to a steady state y,. 

Based on these examples with c = 1 and c = -- 1, we can find y for any c and s. 
Oet -5 

EQUATION WlTH SOURCE 2 = cy + s starts from y = yo at t = 0. (7)dt 
5e&+5 

The source could be a deposit of s = $1000/year, after an initial investment of yo = 5 =Y,
$8000. Or we can withdraw funds at s = -$200/year. The units are "dollars per year" 
to match dyldt. The equation feeds in $1000 or removes $200 continuously-not all 0 -5e-'+5 

at once. 1 
Note again that y = e(c+s)tis not a solution. Its derivative is (c + sly. The combina- Rgmdm9 

tion y = ect+ s is also not a solution (but closer). The analysis of y' = cy + s will be 
our main achievement for dzrerential equations (in this section). The equation is not 
restricted to finance-far from it-but that produces excellent examples. 

I propose to find y in four ways. You may feel that one way is enough.? The first 
way is the fastest-only three lines-but please give the others a chance. There is no 
point in preparing for real problems if we don't solve them. 

Solution by Method 1 (fast way) Substitute the combination y = Aec' + B. The solu- 
tion has this form-exponential plus constant. From two facts we find A and B: 

the equation y' = cy + s gives cAect = c(Aect+ B) + s 

the initial value at t = 0 gives A + B = yo. 

tMy class says one way is more than enough. They just want the answer. Sometimes I cave 
in and write down the formula: y is y,ect plus s(e" - l)/c from the source term. 
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The first line has cAect on both sides. Subtraction leaves cB + s = 0,or B = -SIC. 
Then the second line becomes A = yo -B = yo + (slc): 

S
KEY FORMULA y = or y = yoect+ -(ect - 1) .  

C 

With s = 0 this is the old solution yoect (no source). The example with c = 1 and 
s = 5 produced (yo+ 5)ef - 5. Separating the source term gives yo& + 5(et - 1). 

Solution by Method 2 (slow way) The input yo produces the output yo@. After t 
years any deposit is multiplied by ea. That also applies to deposits made after the 
account is opened. If the deposit enters at time 'IS the growing time is only t - T 
Therefore the multiplying factor is only ec(t- This growth factor applies to the small 
deposit (amount s dT)  made between time Tand T+ dT. 

Now add up all outputs at time t .  The output from yo is yoea. The small deposit 
s dTnear time T grows to ec('-T)s dT. The total is an integral: 

This principle of Duhamel would still apply when the source s varies with time. 
Here s is constant, and the integral divides by c: 

That agrees with the source term from Method 1, at the end of equation (8). There 
we looked for "exponential plus constant," here we added up outputs. 

Method 1 was easier. It succeeded because we knew the form A&'+ B-with 
"undetermined coefficients." Method 2 is more complete. The form for y is part of 
the output, not the input. The source s is a continuous supply of new deposits, all 
growing separately. Section 6.5 starts from scratch, by directly integrating y' = cy + s. 

Remark Method 2 is often described in terms of an integrating factor. First write 
the equation as y' - cy = s. Then multiply by a magic factor that makes integration 
possible: 

( y r- cy)e-ct  = se-c' multiply by the factor e-" 

ye-"]: = - -S 
e - ~ t $  integrate both sides 

C 

ye - C t  - yo = - -S (e- C f  - 1) substitute 0 and t 
C 

y = ectyo+ -S 
(ect- 1 )  isolate y to reach formula (8) 

C 


The integrating factor produced a perfect derivative in line 1. I prefer Duhamel's idea, 
that all inputs yo and s grow the same way. Either method gives formula (8) for y. 

THE MATHEMATICS OF FINANCE (AT A CONTINUOUS RATE) 

The question from finance is this: What inputs give what outputs? The inputs can 
come at the start by yo, or continuously by s. The output can be paid at the end or 
continuously. There are six basic questions, two of which are already answered. 

The future value is yoect from a deposit of yo. To produce y in the future, deposit 
the present value ye-". Questions 3-6 involve the source term s. We fix the continuous 



6 Exponentlab and Logarithms 

rate at 5% per year (c = .05), and start the account from yo = 0. The answers come 
fast from equation (8). 

Question 3 With deposits of s = $1000/year, how large is y after 20 years? 

One big deposit yields 20,000e z$54,000. The same 20,000 via s yields $34,400. 
Notice a small by-product (for mathematicians). When the interest rate is c = 0, 

our formula s(ec'- l)/c turns into 010. We are absolutely sure that depositing 
$1000/year with no interest produces $20,000 after 20 years. But this is not obvious 
from 010. By l'H6pital's rule we take c-derivatives in the fraction: 

s(ec'- 1) steC'lim -= lim -= st. This is (1000)(20)= 20,000. (11)
c+O C c-ro 1 

Question 4 What continuous deposit of s per year yields $20,000 after 20 years? 

S 1000
20,000 = -(e(.0"(20)- 1) requires s = ---582.

.05 e - 1 

Deposits of $582 over 20 years total $11,640. A single deposit of yo = 20,00O/e = 
$7,360 produces the same $20,000 at the end. Better to be rich at t = 0. 

Questions 1and 2 had s = 0 (no source). Questions 3 and 4 had yo = 0 (no initial 
deposit). Now we come to y = 0. In 5, everything is paid out by an annuity. In 6, 
everything is paid up on a loan. 

Question 5 What deposit yo provides $1000/year for 20 years? End with y = 0. 

-S 
y = yoec'+ -S 

(ec'- 1)= 0 requires yo = -(1 - e-").
C C 

Substituting s = - 1000, c = .05, t = 20 gives yo x 12,640. If you win $20,000 in a 
lottery, and it is paid over 20 years, the lottery only has to put in $12,640. Even less 
if the interest rate is above 5%. 

Question 6 What payments s will clear a loan of yo = $20,000 in 20 years? 

Unfortunately, s exceeds $1000 per year. The bank gives up more than the $20,000 
to buy your car (and pay tuition). It also gives up the interest on that money. You pay 
that back too, but you don't have to stay even at every moment. Instead you repay 
at a constant rate for 20 years. Your payments mostly cover interest at the start and 
principal at the end. After t = 20 years you are even and your debt is y = 0. 

This is like Question 5 (also y = O), but now we know yo and we want s: 

y = yoec'+ -S 
(ec' - 1)= 0 requires s = - cyoec'/(ec'- 1).

C 

The loan is yo = $20,000, the rate is c = .05/year, the time is t = 20 years. Substituting 
in the formula for s, your payments are $1582 per year. 

Puzzle How is s = $1582 for loan payments related to s = $582 for deposits? 

0 -+ $582 per year +$20,000 and $20,000 + - $1582 per year +0. 
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That difference of exactly 1000 cannot be an accident. 1582 and 582 came from

e 1 e-1
1000 • and 1000 with difference 1000 - 1000.

e-1 e-1 e-1

Why? Here is the real reason. Instead of repaying 1582 we can pay only 1000 (to
keep even with the interest on 20,000). The other 582 goes into a separate account.
After 20 years the continuous 582 has built up to 20,000 (including interest as in
Question 4). From that account we pay back the loan.

Section 6.6 deals with daily compounding-which differs from continuous com-
pounding by only a few cents. Yearly compounding differs by a few dollars.
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34400 +s = 1000 y'= - 3y + 6
20000 - 20000 s =-1582 6 2

12640 Yoo - 3 - 1
s= 582 + 2

20 s =-1000 20

Fig. 6.10 Questions 3-4 deposit s. Questions 5-6 repay loan or annuity. Steady state -s/c.

TRANSIENTS VS. STEADY STATE

Suppose there is decay instead of growth. The constant c is negative and yoec" dies
out. That is the "transient" term, which disappears as t -+ co. What is left is the
"steady state." We denote that limit by y.

Without a source, y, is zero (total decay). When s is present, y, = - s/c:

6J The solution y = Yo + - e" - - approaches y, =- - when ec -*0.

At this steady state, the source s exactly balances the decay cy. In other words
cy + s = 0. From the left side of the differential equation, this means dy/dt = 0. There
is no change. That is why y, is steady.

Notice that y. depends on the source and on c-but not on yo.

EXAMPLE 6 Suppose Bermuda has a birth rate b = .02 and death rate d = .03. The
net decay rate is c = - .01. There is also immigration from outside, of s = 1200/year.
The initial population might be Yo = 5 thousand or Yo = 5 million, but that number
has no effect on yo. The steady state is independent of yo.

In this case y. = - s/c = 1200/.01 = 120,000. The population grows to 120,000 if
Yo is smaller. It decays to 120,000 if Yo is larger.

EXAMPLE 7 Newton's Law of Cooling: dy/dt = c(y - y.). (12)

This is back to physics. The temperature of a body is y. The temperature around it
is y.. Then y starts at Yo and approaches y,, following Newton's rule: The rate is
proportional to y - y. The bigger the difference, the faster heat flows.

The equation has - cy. where before we had s. That fits with y. = - s/c. For the
solution, replace s by - cy. in formula (8). Or use this new method:
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Solution by Method 3 The new idea is to look at the dzrerence y - y, . Its derivative 
is dy/dt, since y, is constant. But dy/dt is c(y -y,)- this is our equation. The differ- 
ence starts from yo -y,, and grows or decays as a pure exponential: 

d
-(y-y,)=c(y-y,) hasthesolution (y-y,)=(yo-y,)e". (13).
dt 

This solves the law of cooling. We repeat Method 3 using the letters s and c: 

(y + :) = c(y + :) has the solution (y + f) = (yo + :)ect. (14) 

Moving s/c to the right side recovers formula (8). There is a constant term and an 
exponential term. In a differential equations course, those are the "particular solution" 
and the "homogeneous solution." In a calculus course, it's time to stop. 

EXAMPLE 8 In a 70" room, Newton's corpse is found with a temperature of 90". A 
day later the body registers 80". When did he stop integrating (at 98.6")? 

Solution Here y, = 70 and yo = 90. Newton's equation (13) is y = 20ec' + 70. Then 
y = 80 at t = 1 gives 206 = 10. The rate of cooling is c = In ). Death occurred when 
2 0 8  + 70 = 98.6 or ect= 1.43. The time was t = In 1.43/ln )= half a day earlier. 

6.3 EXERCISES 

Read-through exercises 

If y' = cy then At) = a . If dyldt = 7y and yo = 4 then 
y(t) = b . This solution reaches 8 at t = c . If the dou- 
bling time is Tthen c = d . If y' = 3y and y(1) = 9 then yo 
was e . When c is negative, the solution approaches 

f a s t j o o .  

The constant solution to dyldt = y + 6 is y = g . The 
general solution is y = Aet -6. If yo = 4 then A = h . The 
solution of dyldt = cy + s starting from yo is y = Ae" + B = 

. The output from the source s is i . An input at 
time T grows by the factor k at time t. 

At c = lo%, the interest in time dt is dy = 1 . This 
equation yields At) = m . With a source term instead of 
yo, a continuous deposit of s = 4000/year yields y = n 
after 10 years. The deposit required to produce 10,000 in 10 
years is s = 0 (exactly or approximately). An income of 
4000/year forever (!) comes from yo = P . The deposit to 
give 4OOOIyear for 20 years is yo = 9 . The payment rate 
s to clear a loan of 10,000 in 10 years is r . 

The solution to y' = -3y + s approaches y, = s . 

Solve 1-4 starting from yo = 1 and from yo = - 1. Draw both 
solutions on the same graph. 

Solve 5-8 starting from yo = 10. At what time does y increase 
to 100 or drop to l? 

9 Draw a field of "tangent arrows" for y' = -y, with the 
solution curves y = e-" and y = -e-". 

10 Draw a direction field of arrows for y' = y -1, with solu- 
tion curves y = eX + 1 and y = 1. 

Problems 11-27 involve yoect.They ask for c or t or yo. 

11 If a culture of bacteria doubles in two hours, how many 
hours to multiply by lo? First find c. 

12 If bacteria increase by factor of ten in ten hours, how 
many hours to increase by 100?What is c? 

13 How old is a skull that contains 3 as much radiocarbon 
as a modern skull? 

14 If a relic contains 90% as much radiocarbon as new mate- 
rial, could it come from the time of Christ? 

15 The population of Cairo grew from 5 million to 10 million 
in 20 years. From y' = cy find c. When was y = 8 million? 

16 The populations of New York and Los Angeles are grow- 
ing at 1% and 1.4% a year. Starting from 8 million (NY) and 
6 million (LA), when will they be equal? 
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17 Suppose the value of $1 in Japanese yen decreases at 2% 
per year. Starting from $1 =Y240, when will 1 dollar equal 1 
yen? 

18 The effect of advertising decays exponentially. If 40% 
remember a new product after three days, find c. How long 
will 20% remember it? 

19 If y = 1000 at t = 3 and y = 3000 at t =4 (exponential 
growth), what was yo at t =O? 

20 If y = 100 at t =4 and y = 10 at t = 8 (exponential decay) 
when will y = l? What was yo? 

21 Atmospheric pressure decreases with height according to 
dpldh =cp. The pressures at h =0 (sea level) and h =20 km 
are 1013 and 50 millibars. Find c. Explain why p = 

halfway up at h = 10. 

22 For exponential decay show that y(t) is the square root of 
y(0) times y(2t). How could you find y(3t) from y(t) and y(2t)? 

23 Most drugs in the bloodstream decay by y' = cy @st- 
order kinetics). (a) The half-life of morphine is 3 hours. Find 
its decay constant c (with units). (b) The half-life of nicotine 
is 2 hours. After a six-hour flight what fraction remains? 

24 How often should a drug be taken if its dose is 3 mg, it is 
cleared at c =.Ol/hour, and 1 mg is required in the blood- 
stream at all times? (The doctor decides this level based on 
body size.) 

25 The antiseizure drug dilantin has constant clearance rate 
y' = -a until y =yl . Then y' = -ayly,. Solve for y(t) in two 
pieces from yo. When does y reach y,? 

26 The actual elimination of nicotine is multiexponential: y = 
Aect+ ~ e ~ ' .The first-order equation (dldt -c)y =0 changes 
to the second-order equation (dldt -c)(d/dt-C)y =0. Write 
out this equation starting with y", and show that it is satisfied 
by the given y. 

27 True or false. If false, say what's true. 
(a) The time for y = ec' to double is (In 2)/(ln c). 
(b) If y' = cy and z' =cz then (y + 2)' =2c(y + z). 
(c) If y' = cy and z' = cz then (ylz)' =0. 
(d)If y' = cy and z' = Cz then (yz)' = (c + C)yz. 

28 A rocket has velocity u. Burnt fuel of mass Am leaves at 
velocity v -7. Total momentum is constant: 

mu =(m -Am)(v + Av) + Am(u -7). 

What differential equation connects m to v? Solve for v(m) not 
v(t), starting from vo = 20 and mo =4. 

Problems 29-36 are about solutions of y' =cy + s. 
29 Solve y' = 3y + 1 with yo = 0 by assuming y = Ae3' + B 
and determining A and B. 

30 Solve y' = 8 -y starting from yo and y = Ae-' + B. 

Solve 31-34 with yo =0 and graph the solution. 

35 (a) What value y =constant solves dy/dt = -2y + 12? 
(b) Find the solution with an arbitrary constant A. 
(c) What solutions start from yo =0 and yo = lo? 
(d) What is the steady state y,? 

36 Choose + signs in dyldt = + 3y f6 to achieve the 
following results starting from yo = 1. Draw graphs. 

(a) y increases to GO (b) y increases to 2 
(c) y decreases to -2 (d) y decreases to -GO 

37 What value y =constant solves dyldt =4 -y? Show that 
y(t)= Ae-' + 4 is also a solution. Find y(1) and y, if yo = 3. 

38 Solve y' =y + e' from yo =0 by Method 2, where the 
deposit eT at time Tis multiplied by e'-T. The total output 
at time t is y(t) =j',eT e' - d ~ =  . Substitute back to 
check y' =y + et. 

39 Rewrite y' =y + et as y' -y = et. Multiplying by e-', the 
left side is the derivative of . Integrate both sides 
from yo =0 to find y(t). 

40 Solve y' = -y + 1 from yo =0 by rewriting as y' + y = 1, 
multiplying by et, and integrating both sides. 

41 Solve y' =y + t from yo =0 by assuming y = Aet + Bt + C. 

Problems 42-57 are about the mathematics of finance. 

42 Dollar bills decrease in value at c = - .04 per year because 
of inflation. If you hold $1000, what is the decrease in dt 
years? At what rate s should you print money to keep even? 

43 If a bank offers annual interest of 74% or continuous 
interest of 74%, which is better? 

44 What continuous interest rate is equivalent to an annual 
rate of 9%? Extra credit: Telephone a bank for both rates 
and check their calculation. 

45 At 100% interest (c = 1) how much is a continuous deposit 
of s per year worth after one year? What initial deposit yo 
would have produced the same output? 

46 To have $50,000 for college tuition in 20 years, what gift 
yo should a grandparent make now? Assume c = 10%. What 
continuous deposit should a parent make during 20 years? If 
the parent saves s = $1000 per year, when does he or she reach 
$50,000 arid retire? 
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47 Income per person grows 3%, the population grows 2%, 
the total income grows . Answer if these are (a) 
annual rates (b) continuous rates. 

48 When dyldt = cy + 4, how much is the deposit of 4dT at 
time T worth at the later time t? What is the value at t = 2 of 
deposits 4dTfrom T= 0 to T= I? 

49 Depositing s = $1000 per year leads to $34,400 after 20 
years (Question 3). To reach the same result, when should you 
deposit $20,000 all at once? 

50 For how long can you withdraw s = $500/year after 
depositing yo = $5000 at 8%, before you run dry? 

51 What continuous payment s clears a $1000 loan in 60 
days, if a loan shark charges 1% per day continuously? 

52 You are the loan shark. What is $1 worth after a year of 
continuous compounding at 1 % per day? 

53 You can afford payments of s = $100 per month for 48 
months. If the dealer charges c = 6%, how much can you 
borrow? 

54 Your income is Ioe2" per year. Your expenses are Eoect 
per year. (a) At what future time are they equal? (b) If you 
borrow the difference until then, how much money have you 
borrowed? 

55 If a student loan in your freshman year is repaid plus 20% 
four years later, what was the effective interest rate? 

56 Is a variable rate mortgage with c = .09 + .001t for 20 
years better or worse than a fixed rate of lo%? 

57 At 10% instead of 8%, the $24 paid for Manhattan is 
worth after 365 years. 

Problems 58-65 approach a steady state y, as t -+ m. 

58 If dyldt = -y + 7 what is y,? What is the derivative of 
y -y,? Then y -y, equals yo -y ,  times . 

59 Graph y(t) when y' = 3y - 12 and yo is 

(a)below 4 (b) equal to 4 (c) above 4 

60 The solutions to dyldt = c(y - 12) converge to y ,  = 

provided c is . 

61 Suppose the time unit in dyldt = cy changes from minutes 
to hours. How does the equation change? How does dyldt = 

-y + 5 change? How does y ,  change? 

62 True or false, when y, and y, both satisfy y' = cy + s. 

(a)The sum y = y, + y, also satisfies this equation. 

(b)The average y = $(yl + y2) satisfies the same equation. 

(c) The derivative y = y; satisfies the same equation. 

63 If Newton's coffee cools from 80" to 60" in 12 minutes 
(room temperature 20G), find c. When was the coffee at 100G? 

64 If yo = 100 and y(1) = 90 and y(2) = 84, what is y,? 

65 If yo = 100 and y(1) = 90 and y(2) = 81, what is yr? 

66 To cool down coffee, should you add milk now or later? 
The coffee is at 70°C, the milk is at lo0, the room is at 20". 

(a) Adding 1 part milk to 5 parts coffee makes it 60". With 
y, = 20", the white coffee cools to y(t) = . 

(b)The black coffee cools to y,(t) = . The milk 
warms to y,(t) = . Mixing at time t gives 
(5yc + y J 6  =--

6.4 Logarithms 

We have given first place to ex and a lower place to In x. In applications that is 
absolutely correct. But logarithms have one important theoretical advantage (plus 
many applications of their own). The advantage is that the derivative of In x is l/x, 
whereas the derivative of ex is ex. We can't define ex as its own integral, without 
circular reasoning. But we can and do define In x (the natural logarithm) as the 
integral of the " - 1 power" which is llx: 

Note the dummy variables, first x then u. Note also the live variables, first x then y. 
Especially note the lower limit of integration, which is 1 and not 0. The logarithm is 
the area measured from 1. Therefore In 1 = 0 at that starting point-as required. 



6.4 Logarithms 253

Earlier chapters integrated all powers except this "-1 power." The logarithm is
that missing integral. The curve in Figure 6.11 has height y = 1/x-it is a hyperbola.
At x = 0 the height goes to infinity and the area becomes infinite: log 0 = - 00.
The minus sign is because the integral goes backward from 1 to 0. The integral
does not extend past zero to negative x. We are defining In x only for x > O.t

I 1

In 2-

1 x 1 a ab 1/2 1 2 4

Fig. 6.11 Logarithm as area. Neighbors In a + In b = In ab. Equal areas: -In = In 2 = In 4.

1
With this new approach, In x has a direct definition. It is an integral (or an area).

Its two key properties must follow from this definition. That step is a beautiful
application of the theory behind integrals.

Property 1: In ab = In a + In b. The areas from 1 to a and from a to ab combine into
a single area (1 to ab in the middle figure):

a 1 ab fab

Neighboring areas: dx + - dx - dx. (2)
x x x

The right side is In ab, from definition (1). The first term on the left is In a. The
problem is to show that the second integral (a to ab) is In b:

- d x  du = In b. (3)

We need u = 1 when x = a (the lower limit) and u = b when x = ab (the upper limit).
The choice u = x/a satisfies these requirements. Substituting x = au and dx = a du
yields dx/x = du/u. Equation (3) gives In b, and equation (2) is In a + In b = In ab.

Property 2: In b" = n In b. These are the left and right sides of

{b" 1 dx (?) n -Jdu. (4)

This comes from the substitution x = u". The lower limit x = 1 corresponds to u = 1,
and x = b" corresponds to u = b. The differential dx is nu"-ldu. Dividing by x = u"
leaves dx/x = n du/u. Then equation (4) becomes In b" = n In b.

Everything comes logically from the definition as an area. Also definite integrals:

3x3x
EXAMPLE I Compute - dt. Solution: In 3x - In x = In - In 3.

11
EXAMPLE 2 Compute - dx. Solution: In 1 - In .1 = In 10. (Why?)

tThe logarithm of -1 is 7ni (an imaginary number). That is because e"'= -1. The logarithm
of i is also imaginary-it is ½7i. In general, logarithms are complex numbers.
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EXAMPLE 3 Compute ' du. Solution: In e2 = 2. The area from 1 to e2 is 2.

Remark While working on the theory this is a chance to straighten out old debts.
The book has discussed and computed (and even differentiated) the functions ex and
bx and x", without defining them properly. When the exponent is an irrational number
like rt, how do we multiply e by itself i times? One approach (not taken) is to come
closer and closer to it by rational exponents like 22/7. Another approach (taken now)
is to determine the number e' = 23.1 ... by its logarithm.t Start with e itself:

e is (by definition) the number whose logarithm is 1

e" is (by definition) the number whose logarithm is 7r.

When the area in Figure 6.12 reaches 1, the basepoint is e. When the area reaches 7E,

the basepoint is e'. We are constructing the inverse function (which is ex). But how
do we know that the area reaches 7t or 1000 or -1000 at exactly one point? (The
area is 1000 far out at e1000 . The area is -1000 very near zero at e-100ooo0.) To define
e we have to know that somewhere the area equals 1!

For a proof in two steps, go back to Figure 6.11c. The area from 1 to 2 is more
than 1 (because 1/x is more than - on that interval of length one). The combined area
from 1 to 4 is more than 1. We come to area = 1 before reaching 4. (Actually at
e = 2.718....) Since 1/x is positive, the area is increasing and never comes back to 1.

To double the area we have to square the distance. The logarithm creeps upwards:

In x
In x -+ oo but --* 0. (5)

x

The logarithm grows slowly because ex grows so fast (and vice versa-they are
inverses). Remember that ex goes past every power x". Therefore In x is passed by
every root x'l". Problems 60 and 61 give two proofs that (In x)/xl"I approaches zero.

We might compare In x with x/. At x = 10 they are close (2.3 versus 3.2). But out
at x = e'o the comparison is 10 against e5, and In x loses to x.

e
e

e 1 ex e

Fig. 6.12 Area is logarithm of basepoint. Fig. 6.13 In x grows more slowly
than x.

I

tChapter 9 goes on to imaginary exponents, and proves the remarkable formula e"' = - 1.
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APPROXIMATION OF LOGARITHMS

The limiting cases In 0 = - co and In oo = + co are important. More important are
1= - logarithms near the starting point In 1 = 0. Our question is: What is In (1 + x) for x
x T near zero? The exact answer is an area. The approximate answer is much simpler.

area x If x (positive or negative) is small, then
minus
area x2/2 In (1 +x) x and ex ;1 + x.

1 1+x
The calculator gives In 1.01 = .0099503. This is close to x = .01. Between 1 and 1 + x

S= ex the area under the graph of 1/x is nearly a rectangle. Its base is x and its height is 1.
I areax2/2 So the curved area In (1 + x) is close to the rectangular area x. Figure 6.14 shows

area x how a small triangle is chopped off at the top.
The difference between .0099503 (actual) and .01 (linear approximation) is

Ox -. 0000497. That is predicted almost exactly by the second derivative: ½ times (Ax)2

Rg. 6.14 times (In x)" is (.01)2( - 1)= - .00005. This is the area of the small triangle!

In(1 + x) . rectangular area minus triangular area = x - Ix 2.

The remaining mistake of .0000003 is close to x3 (Problem 65).
May I switch to ex? Its slope starts at eo = 1, so its linear approximation is 1 + x.

Then In (ex) % In (1 + x) x x. Two wrongs do make a right: In (ex) = x exactly.
The calculator gives e0"1 as 1.0100502 (actual) instead of 1.01 (approximation). The

second-order correction is again a small triangle: ix 2 = .00005. The complete series

for In (1 + x) and ex are in Sections 10.1 and 6.6:

In (1 +x)= x- x 2 /2 + x 3 /3- ... ex = 1 + x + x 2/2+ x3/6 + ....

DERIVATIVES BASED ON LOGARITHMS

Logarithms turn up as antiderivatives very often. To build up a collection of integrals,
we now differentiate In u(x) by the chain rule.

1 du
6K The derivative of In x is -. The derivative of In u(x) is .x u :x

The slope of In x was hard work in Section 6.2. With its new definition (the integral
of 1/x) the work is gone. By the Fundamental Theorem, the slope must be 1/x.

For In u(x) the derivative comes from the chain rule. The inside function is u, the
outside function is In. (Keep u > 0 to define In u.) The chain rule gives

d 1 1
dIn cx= -c- ( !) d 

In X3 = 3x 2 3 3
/x =3

dx cx x dx x
d

-sin d In (x 2 d x
+ 1)= 2x/(x2 + 1) in cos x - tan x

dx dx cos x

d 11In ex = exlex = 1 In (In x)= I
dx dx In x x

Those are worth another look, especially the first. Any reasonable person would
expect the slope of In 3x to be 3/x. Not so. The 3 cancels, and In 3x has the same
slope as In x. (The real reason is that In 3x = In 3 + In x.) The antiderivative of 3/x is
not In 3x but 3 In x, which is In x3.
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Before moving to integrals, here is a new method for derivatives: logarithmic dzreren- 
tiation or LD. It applies to products and powers. The product and power rules are 
always available, but sometimes there is an easier way. 

Main idea: The logarithm of a product p(x) is a sum of logarithms. Switching to 
In p, the sum rule just adds up the derivatives. But there is a catch at the end, as you 
see in the example. 

EXAMPLE 4 Find dpldx if p(x) = xxJx - 1.  Here ln p(x) = x in x + f ln(x - 1). 

1 
Take the derivative of In p: l d p = x . - + l n x + - 1 

pdx x 2(x - 1)' 

Now multiply by p(x): 

The catch is that last step. Multiplying by p complicates the answer. This can't be 
helped-logarithmic differentiation contains no magic. The derivative of p =fg is the 
same as from the product rule: In p = ln f  + In g gives 

For p = xex sin x, with three factors, the sum has three terms: 

In p = l n  x + x + l n  sin x and p l = p  
L 

We multiply p times pl/p (the derivative of In p). Do the same for powers: 

INTEGRALS BASED ON LOGARITHMS 

Now comes an important step. Many integrals produce logarithms. The foremost 
example is llx, whose integral is In x. In a certain way that is the only example, but 
its range is enormously extended by the chain rule. The derivative of In u(x) is uf/u, 
so the integral goes from ul/u back to In u: 

dx = ln u(x) or equivalently = In u. 

Try to choose u(x) so that the integral contains duldx divided by u. 

EXAMPLES 
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Final remark When u is negative, In u cannot be the integral of llu. The logarithm 
is not defined when u < 0. But the integral can go forward by switching to -u: 

jdu? 
dx= 

I-du/dx
-dx =In(- u). 

- U  

Thus In(- u) succeeds when In u fails.? The forbidden case is u =0. The integrals In u 
and In(- u), on the plus and minus sides of zero, can be combined as lnlul. Every 
integral that gives a logarithm allows u < 0 by changing to the absolute value lul: 

The areas are -1 and -In 3. The graphs of llx and l/(x -5) are below the x axis. 
We do not have logarithms of negative numbers, and we will not integrate l/(x -5) 
from 2 to 6. That crosses the forbidden point x = 5, with infinite area on both sides. 

The ratio dulu leads to important integrals. When u =cos x or u = sin x, we are 
integrating the tangent and cotangent. When there is a possibility that u <0, write 
the integral as In lul. 

Now we report on the secant and cosecant. The integrals of llcos x and llsin x 
also surrender to an attack by logarithms - based on a crazy trick: 

sec x + tan x 
+1sec dx = 1 GeC tan x) dx = In isec x + tan XI. (9) 

csc x -cot x 1CSC x dx = j csc x (CSC - X) dx = ln csc x -cot xi. (10) 

Here u = sec x + tan x is in the denominator; duldx = sec x tan x + sec2 x is above it. 
The integral is In lul. Similarly (10) contains duldx over u =csc x -cot x. 

In closing we integrate In x itself. The derivative of x In x is In x + 1. To remove 
the extra 1, subtract x from the integral: I ln x dx = x in x -x. 

In contrast, the area under l/(ln x) has no elementary formula. Nevertheless it is 
the key to the greatest approximation in mathematics-the prime number theorem. 
The area J: dxlln x is approximately the number of primes between a and b. Near eloo0, 
about 1/1000 of the integers are prime. 

6.4 EXERCISES 

Read-through questions e . As x + GO, In x approaches f . But the ratio 

The natural logarithm of x is a . This definition leads (ln x)/& approaches g . The domain and range of in x 

to In xy = b and In xn= c . Then e is the number are h . 
whose logarithm (area under llx curve) is d . Similarly 
ex is now defined as the number whose natural logarithm is The derivative of In x is I . The derivative of ln(1 + x) 

?The integral of llx (odd function) is In 1x1 (even function). Stay clear of x =0. 
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is I . The tangent approximation to ln(1 + x) at x = 0 is 
k . The quadratic approximation is I . The quadratic 

approximation to ex is m . 
The derivative of In u(x) by the chain rule is n . Thus 

(ln cos x)' = 0 . An antiderivative of tan x is P . The 
product p = x e5" has In p = q . The derivative of this equ- 
ation is r . Multiplying by p gives p' = s , which is 
LD or logarithmic differentiation. 

The integral of ul(x)/u(x) is t . The integral of 
2x/(x2+ 4) is u . The integral of llcx is v . The integ- 
ral of l/(ct + s)is w . The integral of l/cos x, after a trick, 
is x . We should write In 1x1 for the antiderivative of llx, 
since this allows Y . Similarly Idu/u should be written 

2 . 

Find the derivative dyldx in 1-10. 

3 y=(ln x)-' 4 y = (ln x)/x 

5 y = x  ln x-x 6 y=loglox 

Find the indefinite (or definite) integral in 11-24. 

cos x dx 
19 1- sin x 

21 I tan 3x dx 22 I cot 3x dx 

25 Graph y = ln (1 + x) 26 Graph y = In (sin x) 

Compute dyldx by differentiating In y. This is LD: 

27 y=,/m 28 Y=,/mJn 
29 y = esinx 30 = x- l lx  

Evaluate 37-42 by any method. 

41 -
d 

ln(sec x + tan x) 
42 lsec2x+ sec x tan x 

dx sec x + tan x 
dx 

Verify the derivatives 43-46, which give useful antiderivatives: 

d x - a  2a
44 -In ---

dx (x + a) -(X2-a') 

Estimate 47-50 to linear accuracy, then quadratic accuracy, 
by exx 1+ x + ix2. Then use a calculator. 

In(' +51 Compute lim -
x+O x 

53 Compute lim logdl x,+ 

x+O x 

ex- 1
52 Compute lim -

x-ro x 

bX- 1 
9Compute lim -

x-ro x 

55 Find the area of the "hyperbolic quarter-circle" enclosed 
byx=2andy=2abovey=l /x .  

56 Estimate the area under y = l/x from 4 to 8 by four upper 
rectangles and four lower rectangles. Then average the 
answers (trapezoidal rule). What is the exact area? 

1 1  
--•57 Why is - + - + + -1 

near In n? Is it above or below? 
2 3 n 

58 Prove that ln x < 2(& - 1) for x > 1. Compare the integ- 
rals of l/t and 1 1 4 ,  from 1 to x. 

59 Dividing by x in Problem 58 gives (In x)/x < 2(& - l)/x. 
Deduce that (In x)/x -,0 as x -, co.Where is the maximum 
of (In x)/x? 

60 Prove that (In x)/xlln also approaches zero. (Start with 
(In xlln)/xlln -,0.)Where is its maximum? 
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61 For any power n, Problem 6.2.59 proved ex> xnfor large 
x. Then by logarithms, x > n In x. Since (In x)/x goes below 
l/n and stays below, it converges to . 
62 Prove that y In y approaches zero as y -+ 0, by changing 
y to llx. Find the limit of yY(take its logarithm as y +0). 
What is .I.' on your calculator? 

63 Find the limit of In x/log,,x as x + co. 

64 We know the integral th-' dt = [th/h]Z = (xh- l)/h. 
Its limit as h +0 is . 

65 Find linear approximations near x = 0 for e-" and 2". 

66 The x3 correction to ln(1 + x) yields x - ix2+ ix3.  Check 
that In 1.01x -0099503and find In 1.02. 

67 An ant crawls at 1foot/second along a rubber band whose 
original length is 2 feet. The band is being stretched at 1 
footlsecond by pulling the other end. At what time T, ifever, 
does the ant reach the other end? 

One approach: The band's length at time t is t + 2. Let y(t) 
be the fraction of that length which the ant has covered, and 
explain 

(a) y' = 1/(t + 2) (b)y = ln(t + 2) - ln 2 (c) T = 2e -2. 

68 If the rubber band is stretched at 8 feetlsecond, when if 
ever does the same ant reach the other end? 

69 A weaker ant slows down to 2/(t + 2) feetlsecond, so y' = 
2/(t + 2)2. Show that the other end is never reached. 

70 The slope of p = xx comes two ways from In p = x In x: 
1 Logarithmic differentiation (LD): Compute (In p)' and 
multiply by p. 
2 Exponential differentiation (ED): Write xX as eXlnX, 
take its derivative, and put back xx. 

71 If p = 2" then In p = . LD gives p' = (p)(lnp)' = 

. ED gives p = e and then p' = . 

72 Compute In 2 by the trapezoidal rule and/or Simpson's 
rule, to get five correct decimals. 

73 Compute In 10 by either rule with Ax = 1, and compare 
with the value on your calculator. 

74 Estimate l/ln 90,000, the fraction of numbers near 90,000 
that are prime. (879 of the next 10,000 numbers are actually 
prime.) 

75 Find a pair of positive integers for which xY=yx. Show 
how to change this equation to (In x)/x = (In y)/y. So look for 
two points at the same height in Figure 6.13. Prove that you 
have discovered all the integer solutions. 

*76 Show that (In x)/x = (In y)/y is satisfied by 

with t # 0. Graph those points to show the curve xY= y'. It 
crosses the line y = x at x = ,where t + co. 

6.5 Separable Equations Including the Logistic Equation 

This section begins with the integrals that solve two basic differential equations: 

-- CY and -
dy - dy -- cy + s. 
dt dt 

We already know the solutions. What we don't know is how to discover those solu-
tions, when a suggestion "try eC"' has not been made. Many important equations, 
including these, separate into a y-integral and a t-integral. The answer comes directly 
from the two separate integrations. When a differential equation is reduced that far-
to integrals that we know or can look up-it is solved. 

One particular equation will be emphasized. The logistic equation describes the 
speedup and slowdown of growth. Its solution is an S-curve, which starts slowly, 
rises quickly, and levels off. (The 1990's are near the middle of the S, if the 
prediction is correct for the world population.) S-curves are solutions to nonlinear 
equations, and we will be solving our first nonlinear model. It is highly important 
in biology and all life sciences. 
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SEPARABLE EQUNIONS 

The equations dyldt = cy and dyldt = cy + s (with constant source s) can be solved 
by a direct method. The idea is to separate y from t: 

9= c dt and -dy -- c dt. 
Y Y + (sld 

All y's are on the left side. All t's are on the right side (and c can be on either side). 
This separation would not be possible for dyldt = y + t. 

Equation (2) contains differentials. They suggest integrals. The t-integrals give ct 
and the y-integrals give logarithms: 

In y = ct + constant and In (3) 

The constant is determined by the initial condition. At t =0we require y = yo, and the 
right constant will make that happen: 

l n y = c t + l n y o  and In y + -  3= c t + l n y o + - .( ( 3 
Then the final step isolates y. The goal is a formula for y itself, not its logarithm, so 
take the exponential of both sides (elny is y): 

y +:y = yoeC' and = (yo + :)ec'. 

It is wise to substitute y back into the differential equation, as a check. 
This is our fourth method for y' = cy + s. Method 1 assumed from the start that 

y = Aect+ B. Method 2 multiplied all inputs by their growth factors ec(' - ') and added 
up outputs. Method 3 solved for y -y,. Method 4 is separation of variables (and all 
methods give the same answer). This separation method is so useful that we repeat 
its main idea, and then explain it by using it. 

To solve dyldt = u(y)v(t), separate dy/u(y)from v(t)dt and integrate both sides: 

Then substitute the initial condition to determine C, and solve for y(t). 

EXAMPLE I dyldt =y2 separates into dyly2 = dt. Integrate to reach -l/y = t + C. 
Substitute t =0 and y = yo to find C = - l/yo. Now solve for y: 

- - =  1 
t - -

1 
and y=-. Yo 

Y Yo 1 - tYo 

This solution blows up (Figure 6.15a) when t reaches lly,. If the bank pays interest 
on your deposit squared (y' =y2), you soon have all the money in the world. 

EXAMPLE 2 dyldt = ty separates into dy/y = t dt. Then by integration in y =ft2 + C. 
Substitute t =0 and y =yo to find C = In yo. The exponential of *t2 + In yo gives 
y =yoe'2'2. When the interest rate is c = t, the exponent is t2/2. 

EXAMPLE 3 dyldt =y + t is not separable. Method 1 survives by assuming y = 
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I I blowup times r =l 
I I Yo 

0 1 2 0 1 

d y  d y  d y  dtFig. 6.15 The solutions to separable equations -= y2 and -= n-Y or -= n-.
dt d t t y t 

Ae' + B + Dt-with an extra coefficient D in Problem 23. Method 2 also succeeds- 
but not the separation method. 

EXAMPLE 4 Separate dyldt = nylt into dyly = n dtlt. By integration In y = n In t + C. 
Substituting t = 0 produces In 0 and disaster. This equation cannot start from time 
zero (it divides by t). However y can start from y, at t = 1, which gives C = In y, . The 
solution is a power function y = y, t ". 

This was the first differential equation in the book (Section 2.2). The ratio of dyly 
to dtlt is the "elasticity" in economics. These relative changes have units like 
dollars/dollars-they are dimensionless, and y = tn has constant elasticity n. 

On log-log paper the graph of In y = n In t + C is a straight line with slope n. 

THE LOGISTIC EQUATION 

The simplest model of population growth is dyldt = cy. The growth rate c is the birth 
rate minus the death rate. If c is constant the growth goes on forever-beyond the 
point where the model is reasonable. A population can't grow all the way to infinity! 
Eventually there is competition for food and space, and y = ect must slow down. 

The true rate c depends on the population size y. It is a function c(y) not a constant. 
The choice of the model is at least half the problem: 

Problem in biology or ecology: Discover c(y). 

Problem in mathematics: Solve dyldt = c(y)y. 

Every model looks linear over a small range of y's-but not forever. When the rate 
drops off, two models are of the greatest importance. The Michaelis-Menten equation 
has c(y) = c/(y + K). The logistic equation has c(y) = c - by. It comes first. 

The nonlinear effect is from "interaction." For two populations of size y and z, the 
number of interactions is proportional to y times z. The Law of Mass Action produces 
a quadratic term byz. It is the basic model for interactions and competition. Here we 
have one population competing within itself, so z is the same as y. This competition 
slows down the growth, because -by2 goes into the equation. 

The basic model of growth versus competition is known as the logistic equation: 

Normally b is very small compared to c. The growth begins as usual (close to ect). 
The competition term by2 is much smaller than cy, until y itselfgets large. Then by2 
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(with its minus sign) slows the growth down. The solution follows an S-curve that 
we can compute exactly. 

What are the numbers b and c for human population? Ecologists estimate the 
natural growth rate as c = .029/year. That is not the actual rate, because of b. About 
1930, the world population was 3 billion. The cy term predicts a yearly increase of 
(.029)(3 billion) = 87 million. The actual growth was more like dyldt = 60 millionlyear. 
That difference of 27 millionlyear was by2: 

27 millionlyear = b(3 b i l l i ~ n ) ~  leads to b = 3 10- 12/year. 

Certainly b is a small number (three trillionths) but its effect is not small. It reduces 
87 to 60. What is fascinating is to calculate the steady state, when the new term by2 
equals the old term cy. When these terms cancel each other, dyldt = cy - by2 is zero. 
The loss from competition balances the gain from new growth: cy = by2 and y = c/b. 
The growth stops at this equilibrium point-the top of the S-curve: 

c .029 
Y , = T ; =  - 3 1012 = 10 billion people. 

According to Verhulst's logistic equation, the world population is converging to 10 
billion. That is from the model. From present indications we are growing much faster. 
We will very probably go beyond 10 billion. The United Nations report in Section 3.3 
predicts 11 billion to 14 billion. 

Notice a special point halfway to y, = clb. (In the model this point is at 5 billion.) 
It is the inflection point where the S-curve begins to bend down. The second derivative 
d2y/dt2 is zero. The slope dyldt is a maximum. It is easier to find this point from the 
differential equation (which gives dyldt) than from y. Take one more derivative: 

y" = (cy - by2)' = cy' - 2byy' = (c - 2by)y'. (8) 

The factor c - 2by is zero at the inflection point y = c/2b, halfway up the S-curve. 

THE S-CURVE 

The logistic equation is solved by separating variables y and t: 

dyldt = cy - by2 becomes J dy/(cy - by2) = ) dt. 

The first question is whether we recognize this y-integral. No. The second question 
is whether it is listed in the cover of the book. No. The nearest is Idx/(a2 - x2), which 
can be reached with considerable manipulation (Problem 21). The third question is 
whether a general method is available. Yes. "Partial fractions" is perfectly suited to 
l/(cy - by2), and Section 7.4 gives the following integral of equation (9): 

Y Yo In-=ct+C andthen In-=C. (10) c - by c -  YO 
That constant C makes the solution correct at t = 0. The logistic equation is integ- 
rated, but the solution can be improved. Take exponentials of both sides to remove 
the logarithms: 

-- y - ect Yo 
c-by c-byo' 

This contains the same growth factor ec' as in linear equations. But the logistic 
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equation is not linear-it is not y that increases so fast. According to ( l l ) ,  it is 
y/(c - by) that grows to infinity. This happens when c - by approaches zero. 

The growth stops at y = clb. That is the final population of the world (10 billion?). 
We still need a formula for y. The perfect S-curve is the graph of y = 1/(1 + e-'). It 

equals 1 when t = oo,it equals 4when t = 0, it equals 0 when t = - co. It satisfies 
y' = y - y2, with c = b = 1. The general formula cannot be so beautiful, because it 
allows any c, b, and yo. To find the S-curve, multiply equation (11) by c - by and 
solve for y: 

When t approaches infinity, e-" approaches zero. The complicated part of the for- 
mula disappears. Then y approaches its steady state clb, the asymptote in Figure 6.16. 
The S-shape comes from the inflection point halfway up. 

1 2 3 4  1988 

Fig. 6.16 The standard S-curve y = 1/(1+ e - ' ) .  The population S-curve (with prediction). 

Surprising observation: z = l /y satisjes a linear equation. By calculus z' = - y'/y2. So 

This equation z' = - cz + b is solved by an exponential e-" plus a constant: 
Year US Model 

Population 

1790 3.9 = 3.9 
1800 5.3 5.3 Turned upside down, y = l/z is the S-curve (12). As z approaches blc, the S-curve 
1810 7.2 7.2 approaches clb. Notice that z starts at l /yo.  
1820 9.6 9.8 
1830 12.9 13.1 EXAMPLE 1 (United States population) The table shows the actual population and 
1840 17.1 17.5 the model. Pearl and Reed used census figures for 1790, 1850, and 1910 to compute 
1850 23.2 = 23.2 c and b. In between, the fit is good but not fantastic. One reason is war-another is
1860 31.4 30.4 
1870 38.6 39.4 depression. Probably more important is immigration."fn fact the Pearl-Reed steady 

1880 50.2 50.2 state c/b is below 200 million, which the US has already passed. Certainly their model 
1890 62.9 62.8 can be and has been improved. The 1990 census predicted a stop before 300 million. 
1900 76.0 76.9 For constant immigration s we could still solve y' = cy - by2 + s by partial fractions- 
1910 92.0 = 92.0 but in practice the computer has taken over. The table comes from Braun's book 
1920 105.7 107.6 DifSerentiaE Equations (Springer 1975). 
1930 122.8 123.1 
1940 131.7 # 136.7 
1950 150.7 149.1 ?Immigration does not enter for the world population model (at least not yet). 
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Remark For good science the y2 term should be explained and justified. It gave a 
nonlinear model that could be completely solved, but simplicity is not necessarily 
truth. The basic justification is this: In a population of size y, the number of encounters 
is proportional to y2. If those encounters are fights, the term is -by2. If those 
encounters increase the population, as some like to think, the sign is changed. There 
is a cooperation term + by2, and the population increases very fast. 

EXAMPLE 5 y' = cy + by2: y goes to infinity in afinite time. 

EXAMPLE6 y' = - dy + by2: y dies to zero if yo < dlb. 

In Example 6 death wins. A small population dies out before the cooperation by2 
can save it. A population below dlb is an endangered species. 

The logistic equation can't predict oscillations-those go beyond dyldt =f(y). 

The y line Here is a way to understand every nonlinear equation y' =f(y). Draw a 
" y  line." Add arrows to show the sign of f(y).  When y' =f ( y )  is positive, y is increasing 
(it follows the arrow to  the right). When f is negative, y goes to the left. When f is zero, 
the equation is y' = 0 and y is stationary: 

y' = cy - by2 (this is f (y))  y' = - dy + by2 (this is f (y))  

The arrows take you left or right, to the steady state or to infinity. Arrows go toward 
stable steady states. The arrows go away, when the stationary point is unstable. The 
y line shows which way y moves and where it stops. 

The terminal velocity of a falling body is v, = & in Problem 6.7.54. For f ( y )  = 

sin y there are several steady states: 

falling body: dvldt = g - v2 dyldt = sin y 

EXAMPLE 7 Kinetics of a chemical reaction mA + nB -+ pC. 

The reaction combines m molecules of A with n molecules of B to produce p 
molecules of C. The numbers m, n, p are 1, 1,2 for hydrogen chloride: H, + C1, = 

2 HCl. The Law of Mass Action says that the reaction rate is proportional to the 
product of the concentrations [ A ]  and [B] .Then [ A ]  decays as [C]  grows: 

d[A]/dt= - r[A]  [B]  and d [Clldt = + k [ A ]  [B] .  (15) 

Chemistry measures r and k. Mathematics solves for [ A ]  and [ C ] .Write y for the 
concentration [ C ] ,  the number of molecules in a unit volume. Forming those y 
molecules drops the concentration [ A ]  from a, to a, - (m/p)y.Similarly [B] drops 
from b, to b, - (n/p)y.The mass action law (15)contains y2: 
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This fits our nonlinear model (Problem 33-34). We now find this same mass action 
in biology. You recognize it whenever there is a product of two concentrations. 

THE MM EQUATION wdt=- cy/(y+ K) 

Biochemical reactions are the keys to life. They take place continually in every living 
organism. Their mathematical description is not easy! Engineering and physics go 
far with linear models, while biology is quickly nonlinear. It is true that y' = cy is 
extremely effective in first-order kinetics (Section 6.3), but nature builds in a nonlinear 
regulator. 

It is enzymes that speed up a reaction. Without them, your life would be in slow 
motion. Blood would take years to clot. Steaks would take decades to digest. Calculus 
would take centuries to learn. The whole system is awesomely beautiful-DNA tells 
amino acids how to combine into useful proteins, and we get enzymes and elephants 
and Isaac Newton. 

Briefly, the enzyme enters the reaction and comes out again. It is the catalyst. Its 
combination with the substrate is an unstable intermediate, which breaks up into a 
new product and the enzyme (which is ready to start over). 

Here are examples of catalysts, some good and some bad. 

The platinum in a catalytic converter reacts with pollutants from the car engine. 
(But platinum also reacts with lead-ten gallons of leaded gasoline and you 
can forget the platinum.) 
Spray propellants (CFC's) catalyze the change from ozone (03) into ordinary 
oxygen (0J. This wipes out the ozone layer-our shield in the atmosphere. 
Milk becomes yoghurt and grape juice becomes wine. 
Blood clotting needs a whole cascade of enzymes, amplifying the reaction at 
every step. In hemophilia-the "Czar's diseasew-the enzyme called Factor VIII 
is missing. A small accident is disaster; the bleeding won't stop. 
Adolph's Meat Tenderizer is a protein from papayas. It predigests the steak. 
The same enzyme (chymopapain) is injected to soften herniated disks. 
Yeast makes bread rise. Enzymes put the sour in sourdough. 

Of course, it takes enzymes to make enzymes. The maternal egg contains the material 
for a cell, and also half of the DNA. The fertilized egg contains the full instructions. 

We now look at the Michaelis-Menten (MM) equation, to describe these reactions. 
It is based on the Law of Mass Action. An enzyme in concentration z converts a 
substrate in concentration y by dyldt = - byz. The rate constant is 6, and you see 
the product of "enzyme times substrate." A similar law governs the other reactions 
(some go backwards). The equations are nonlinear, with no exact solution. It is 
typical of applied mathematics (and nature) that a pattern can still be found. 

What happens is that the enzyme concentration z(t) quickly drops to z, K/(y + K). 
The Michaelis constant K depends on the rates (like 6) in the mass action laws. 
Later the enzyme reappears (z, = 2,). But by then the first reaction is over. Its law 
of mass action is effectively 

with c =.bz,K. This is the Michaelis-Menten equation-basic to biochemistry. 
The rate dyldt is all-important in biology. Look at the function cy/(y + K): 

when y is large, dyldt x - c when y is small, dyldt x - cylK. 
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The start and the finish operate at different rates, depending whether y dominates K 
or K dominates y. The fastest rate is c. 

A biochemist solves the MM equation by separating variables: 

S y d y =  -Sc dt gives y +  K In y =  - ct + C. 

Set t = 0 as usual. Then C = yo + K In yo. The exponentials of the two sides are 

We don't have a simple formula for y. We are lucky to get this close. A computer 
can quickly graph y(t)-and we see the dynamics of enzymes. 

Problems 27-32 follow up the Michaelis-Menten theory. In science, concentrations 
and rate constants come with units. In mathematics, variables can be made dimen- 
sionless and constants become 1. We solve d v d T  = Y/(Y+ 1) and then $witch back 
to y, t, c, K. This idea applies to other equations too. 

Essential point: Most applications of calculus come through dzrerential equations. 
That is the language of mathematics-with populations and chemicals and epidemics 
obeying the same equation. Running parallel to dyldt = cy are the difference equations 
that come next. 

6.5 EXERCISES 

Read-through questions 

The equations dy/dt = cy and dyldt = cy + s and dyldt = 

u(y)v(t) are called a because we can separate y from t. 
6 dy/dx=tan ycos x, yo= 1 Integration of idyly =1c dt gives b . Integration of 

1dy/(y + sjc) = i c  dt gives c . The equation dyldx = 7 dyldt = y sin t, yo = 1 
-xly leads to d . Then y2 + x2 = e and the solution 
stays on a circle. 8 dyldt = et-Y, yo =e 

9 Suppose the rate of rowth is proportional to & instead 
The logistic equation is dyldt = f . The new term -by2 of y. Solve dyldt = c&starting from yo. 

represents g when cy represents growth. Separation gives 
10 The equation dyjdx = nylx for constant elasticity is the idy/(cy -by2)= [dt, and the y-integral is l/c times In h . 

. The solution is In y = Substituting yo at t =0 and taking exponentials produces same as d(ln y)/d(ln x) = 

y/(c -by) = ect( i ). As t + co,y approaches i . That 
is the steady state where cy - by2 = k . The graph of y 11 When c =0 in the logistic equation, the only term is y' = 

looks like an I , because it has an inflection point at -by2. What is the steady state y,? How long until y drops 
y =  m . from yo to iyo? 

In biology and chemistry, concentrations y and z react at 12 Reversing signs in Problem 11, suppose y' = + by2. At 

a rate proportional to y times n . This is the Law of what time does the population explode to y = co, starting 

o . In a model equation dyldt = c(y)y, the rate c depends from yo = 2 (Adam + Eve)? 

on P . The MM equation is dyldt = q . Separating 
variables yields j r dy = s = -ct + C. Problems 13-26 deal with logistic equations y' =cy -by2. 

13 Show that y = 1/(1+ e-') solves the equation y' = y -y2. 
Draw the graph of y from starting values 3 and 3 .

Separate, integrate, and solve equations 1-8. 
14 (a) What logistic equation is solved by y = 2/(1 + e-')? 

(b) Find c and b in the equation solved by y = 1/(1 + e-3t). 

15 Solve z' = - z + 1 with zo = 2. Turned upside down as in 
3 dyjdx =xly2, yo = 1 ( 1  3), what is y = l/z? 
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16 By algebra find the S-curve (12) from y = l/z in (14). 

17 How many years to grow from yo =$c/b to y =#c/b? Use 
equation (10) for the time t since the inflection point in 1988. 
When does y reach 9 billion = .9c/b? 

18 Show by differentiating u =y/(c-by) that if y' =cy -by2 
then u' =cu. This explains the logistic solution (11) - it is 
u =uoect. 

19 Suppose Pittsburgh grows from yo = 1 million people in 
1900 to y =3 million in the year 2000. If the growth rate is 
y' = 12,00O/year in 1900 and y' =30,00O/year in 2000, substi- 
tute in the logistic equation to find c and b. What is the steady 
state? Extra credit: When does y =y, /2 =c/2b? 

20 Suppose c = 1 but b = - 1, giving cooperation y' =y +y2. 
Solve for fit) if yo = 1. When does y become infinite? 

21 Draw an S-curve through (0,O) with horizontal asymp- 
totes y = - 1 and y = 1. Show that y =(et-e-')/(et + e-') has 
those three properties. The graph of y2 is shaped like 

22 To solve y' =cy -by3 change to u = l/y2. Substitute for 
y' in u' = -2y'/y3 to find a linear equation for u. Solve it as 
in (14) but with uo = ljy;. Then y = I/&. 

23 With y =rY and t =ST, the equation dyldt =cy -by2 
changes to d Y/d T= Y-Y'. Find r and s. 

24 In a change to y =rY and t =ST,how are the initial values 
yo and yb related to Yo and G? 
25 A rumor spreads according to y' =y(N -y). If y people 
know, then N -y don't know. The product y(N -y) measures 
the number of meetings (to pass on the rumor). 

(a) Solve dyldt =y(N -y) starting from yo = 1. 
(b) At what time T have N/2 people heard the rumor? 
(c) This model is terrible because T goes to as 
N + GO. A better model is y' =by(N -y). 

26 Suppose b and c are bcth multiplied by 10. Does the 
middle of the S-curve get steeper or flatter? 

Problems 27-34 deal with mass action and the MM equation 
y' = -cy/(y + K). 

27 Most drugs are eliminated acording to y' = -cy but 

aspirin follows the MM equation. With c =K =yo = 1, does 
aspirin decay faster? 

28 If you take aspirin at a constant rate d (the maintenance 
dose), find the steady state level where d =cy/(y + K). Then 
y' =0. 

29 Show that the rate R =cy/(y +K) in the MM equation 
increases as y increases, and find the maximum as y -* a. 

30 Graph the rate R as a function of y for K = 1 and K = 
10. (Take c = 1.) As the Michaelis constant increases, the rate 

. At what value of y i s  R =*c? 

31 With y =KY and ct = KT, find the "nondimensional" 
MM equation for dY/dT. From the solution erY= 
e-= eroYo recover the y, t solution (19). 

32 Graph fit) in (19) for different c and K (by computer). 

33 The Law of Mass Action for A + B + C is y' = 
k(ao-y)(bo-y). Suppose yo =0, a. =bo =3, k = 1. Solve for 
y and find the time when y =2. 

34 In addition to the equation for d[C]/dt, the mass action 
law gives d[A]/dt = 

35 Solve y' =y + t from yo =0 by assuming y =Aet + B +Dt. 
Find A, B, D. 

36 Rewrite cy -by2 as a2 -x2, with x =Gy-c/2$ and 
a =  . Substitute for a and x in the integral taken 
from tables, to obtain the y-integral in the text: 

1 Y--In- {A=-ln-
-a2-x2 2a a - xa ' x  cy-by2 c c-by 

37 (Important) Draw the y-lines (with arrows as in the text) 
for y' =y/(l -y) and y' =y -y3. Which steady states are 
approached from which initial values yo? 

38 Explain in your own words how the y-line works. 

39 (a) Solve yl= tan y starting from yo = n / 6  to find 
sin y =$et. 
(b)Explain why t = 1 is never reached. 
(c) Draw arrows on the y-line to show that y approaches 
7112 -when does it get there? 

40 Write the logistic equation as y' =cy(1-y/K). As y' 
approaches zero, y approaches . Find y, y', y" at the 
inflection point. 

6.6 Powers lnstead of Exponentials 

You may remember our first look at e. It is the special base for which ex has slope 1 
at x = 0.That led to the great equation of exponential growth: The derivative of 
ex equals ex. But our look at the actual number e = 2.71828 ... was very short. 
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It appeared as the limit of (1 + lln)". This seems an unnatural way to write down 
such an important number. 

I want to show how (1 + lln)" and (1 + xln)" arise naturally. They give discrete
growth infinite steps-with applications to compound interest. Loans and life insur- 
ance and money market funds use the discrete form of yf = cy + s. (We include extra 
information about bank rates, hoping this may be useful some day.) The applications 
in science and engineering are equally important. Scientific computing, like account- 
ing, has diflerence equations in parallel with differential equations. 

Knowing that this section will be full of formulas, I would like to jump ahead and 
tell you the best one. It is an infinite series for ex. What makes the series beautiful is 
that its derivative is itself: 

Start with y = 1 + x.  This has y = 1 and yt = 1 at x = 0. But y" is zero, not one. 
Such a simple function doesn't stand a chance! No polynomial can be its own deriva- 
tive, because the highest power xn drops down to nxn-l. The only way is to have no 
highest power. We are forced to consider infinitely many terms-a power series-to 
achieve "derivative equals function.'' 

 

To produce the derivative 1 + x, we need 1 + x + ix2. Then ix2  is the derivative 
of Ax3, which is the derivative of &x4. The best way is to write the whole series at 
once: 

Infinite series ex = 1 + x + ix2  + 4x3 + &x4 + -. (1) 

This must be the greatest power series ever discovered. Its derivative is itself: 

The derivative of each term is the term before it. The integral of each term is the one 
after it (so j exdx = ex + C). The approximation ex = 1 + x appears in the first two 
terms. Other properties like (ex)(ex) = eZX are not so obvious. (Multiplying series is 
hard but interesting.) It is not even clear why the sum is 2.718 ... when x =  1. 
Somehow 1 + 1 + f + & + equals e. That is where (1 + lln)" will come in. 

Notice that xn is divided - by the product 1 2 3 * - . -  n. This is "n factorial." Thus 
x4 is divided by 1 2 3 4 = 4! = 24, and xS is divided by 5! = 120. The derivative of 
x5/120 is x4/24, because 5 from the derivative cancels 5 from the factorial. In general 
xn/n! has derivative xn - '/(n - l)! Surprisingly O! is 1. 

Chapter 10 emphasizes that xn/n! becomes extremely small as n increases. The 
infinite series adds up to a finite number-which is ex. We turn now to discrete 
growth, which produces the same series in the limit. 

This headline was on page one of the New York Times for May 27, 1990. 

. 

213 Years After Loan, Uncle Sam is Dunned 

San Antonio, May 26-More than 200 years ago, a wealthy Pennsylvania 
merchant named Jacob DeHaven lent $450,000 to the Continental Congress to 
rescue the troops at Valley Forge. That loan was apparently never repaid. 

So Mr. DeHaven's descendants are taking the United States Government to 
court to collect what they believe they are owed. The total: $141 billion if the 
interest is compounded daily at 6 percent, the going rate at the time. If com- 
pounded yearly, the bill is only $98 billion. 

The thousands of family members scattered around the country say they are 
not being greedy. "It's not the money-it's the principle of the thing," said 
Carolyn Cokerham, a DeHaven on her father's side who lives in San Antonio. 
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"You have to wonder whether there would even be a United States if this man 
had not made the sacrifice that he did. He gave everything he had." 

The descendants say that they are willing to be flexible about the amount of 
settlement. But they also note that interest is accumulating at $190 a second. 

"None of these people have any intention of bankrupting the Government," 
said Jo Beth Kloecker, a lawyer from Stafford, Texas. Fresh out of law school, 
Ms. Kloecker accepted the case for less than the customary 30 percent 
contingency. 

It is unclear how many descendants there are. Ms. Kloecker estimates that 
based on 10 generations with four children in each generation, there could be as 
many as half a million. 

The initial suit was dismissed on the ground that the statute of limitations is 
six years for a suit against the Federal Government. The family's appeal asserts 
that this violates Article 6 of the Constitution, which declares as valid all debts 
owed by the Government before the Constitution was adopted. 

Mr. DeHaven died penniless in 1812. He had no children. 

C O M P O U N D  INTEREST 

The idea of compound interest can be applied right away. Suppose you invest $1000 
at a rate of 100% (hard to do). If this is the annual rate, the interest after a year is 
another $1000. You receive $2000 in all. But if the interest is compounded you receive 
more: 

after six months: Interest of $500 is reinvested to give $1500 

end of year: New interest of $750 (50% of 1500) gives $2250 total. 

The bank multiplied twice by 1.5 (1000 to 1500 to 2250). Compounding quarterly 
multiplies four times by 1.25 (1 for principal, .25 for interest): 

after one quarter the total is 1000 + (.25)(1000) = 1250 

after two quarters the total is 1250 + (.25)(1250)= 1562.50 

after nine months the total is 1562.50 + (.25)(1562.50)= 1953.12 

after a full year the total is 1953.12 + (.25)(@53. 12) = 2441.41 

Each step multiplies by 1 + (l/n), to add one nth of a year's interest-still at 100%: 

quarterly conversion: (1 + 1/4)4x low = 2441.41 

monthly conversion: (1 + 1/12)" x 1Qh= 2613.04 

daily conversion: (1 + 1/365)36% 1000 = 2714.57. 

Many banks use 360 days in a year, although computers have made that obsolete. 
Very few banks use minutes (525,600 per year). Nobody compounds every second 
(n = 31,536,000). But some banks offer continuous compounding. This is the limiting 
case (n -+ GO) that produces e: 

x 1000 approaches e x 1000 = 2718.28. 
(1 + 

1 
1. Quick method for (1 + lln)": Take its logarithm. Use ln(1 + x) x x with x = -: 

n 
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As l/n gets smaller, this approximation gets better. The limit is 1. Conclusion: 
(1 + l/n)" approaches the number whose logarithm is 1. Sections 6.2 and 6.4 define 
the same number (which is e). 

2. Slow method for (1 + l/n)": Multiply out all the terms. Then let n + a. 

This is a brutal use of the binomial theorem. It involves nothing smart like logarithms, 
but the result is a fantastic new formula for e. 

Practice for n = 3: 

Binomial theorem for any positive integer n: 

Each term in equation (4) approaches a limit as n + a. Typical terms are 

Next comes 111 2 3 4. The sum of all those limits in (4) is our new formula for e: 

In summation notation this is Z,"=, l/k! = e. The factorials give fast convergence: 

Those nine terms give an accuracy that was not reached by n = 365 compoundings. 
A limit is still involved (to add up the whole series). You never see e without a limit! 
It can be defined by derivatives or integrals or powers (1 + l/n)" or by an infinite 
series. Something goes to zero or infinity, and care is required. 

All terms in equation (4) are below (or equal to) the corresponding terms in (5). 
The power (1 + l/n)" approaches e from below. There is a steady increase with n. Faster 
compounding yields more interest. Continuous compounding at 100% yields e, as 
each term in (4) moves up to its limit in (5). 

Remark Change (1 lln)" to (1 xln)". Now the binomial theorem produces ex: 

Please recognize ex on the right side! It is the infinite power series in equation (1). 
The next term is x3/6 (x can be positive or negative). This is a final formula for ex: 

The logarithm of that power is n In(1 + x/n) x n(x/n) = x. The power approaches ex. 
To summarize: The quick method proves (1 + lln)" + e by logarithms. The slow 

method (multiplying out every term) led to the infinite series. Together they show the 
agreement of all our definitions of e. 

+ + 



DIFFERENCE EQUATIONS VS. DIFFERENTIAL EQUATIONS 


We have the chance to see an important part of applied mathematics. This is not a 
course on differential equations, and it cannot become a course on difference equ- 
ations. But it is a course with a purpose-we aim to use what we know. Our main 
application of e was to solve y' = cy and y' = cy + s. Now we solve the corresponding 
difference equations. 

Above all, the goal is to see the connections. The purpose of mathematics is to 
understand and explain patterns. The path from "discrete to continuous" is beautifully 
illustrated by these equations. Not every class will pursue them to the end, but I 
cannot fail to show the pattern in a difference equation: 

Each step multiplies by the same number a. The starting value yo is followed by ay,, 
a2yo, and a3y0. The solution at discrete times t = 0, 1,2, .. . is y(t) = atyo. 

This formula atyo replaces the continuous solution ectyo of the differential equation. 

decaying 

Fig. 6.17 Growth for la1 > 1, decay for la1 < 1. Growth factor a compares to ec. 

A source or sink (birth or death, deposit or withdrawal) is like y' = cy + s: 
y(t + 1)= ay(t) + s. 

Each step multiplies by a and adds s. The first outputs are 

We saw this pattern for differential equations-every input s becomes a new starting 
point. It is multiplied by powers of a. Since s enters later than yo, the powers stop at 
t - 1. Algebra turns the sum into a clean formula by adding the geometric series: 

y(t)= atyo + s[at-' +at-' + + a +  1]= atyo + s(at- l)/(a- 1). (9) 

EXAMPLE 1 Interest at 8% from annual IRA deposits of s = $2000 (here yo = 0). 

The first deposit is at year t = 1. In a year it is multiplied by a = 1.08, because 8% is 
added. At the same time a new s = 2000 goes in. At t = 3 the first deposit has been 
multiplied by (1.08)2, the second by 1.08, and there is another s = 2000. After year t, 

y(t) = 2000(1.08' - 1)/(1 .08 - 1). (10) 

With t = 1 this is 2000. With t = 2 it is 2000 (1.08 + 1)-two deposits. Notice how 
a - 1 (the interest rate .08) appears in the denominator. 

EXAMPLE 2 Approach to steady state when la1 < 1. Compare with c <0. 

With a > 1, everything has been increasing. That corresponds to c > 0 in the 
differential equation (which is growth). But things die, and money is spent, so a can 
be smaller than one. In that case atyo approaches zero-the starting balance disap- 
pears. What happens if there is also a source? Every year half of the balance y(t) is 
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spent and a new $2000 is deposited. Now a = +: 

y(t + 1) = $y(t) + 2000 yields y(t) = (f)ty, + 2000[((+)' - I)/(+- I)]. 

The limit as t -,co is an equilibrium point. As (fy goes to zero, y(t) stabilizes to 

y, = 200qO - I)/($- 1)= 4000 = steady state. (1 1) 

Why is 4000 steady? Because half is lost and the new 2000 makes it up again. The 
iteration is y,,, ,= fy,, + 2000. Ztsfied point is where y, =fy, + 2000. 

In general the steady equation is y, = ay, + s. Solving for y, gives s/(l - a). 
Compare with the steady differential equation y' = cy + s = 0: 

S S 
y, = - - (differential equation) us. y, = -(difference equation). (12)

c 1 - a  

EXAMPLE 3 Demand equals supply when the price is right. 

Difference equations are basic to economics. Decisions are made every year (by a 
farmer) or every day (by a bank) or every minute (by the stock market). There are 
three assumptions: 

1. Supply next time depends on price this time: S(t + 1)= cP(t). 
2. Demand next time depends on price next time: D(t + 1) = -dP(t + 1)+ b. 
3. Demand next time equals supply next time: D(t + 1)= S(t + 1). 

Comment on 3: the price sets itself to make demand = supply. The demand slope -d 
is negative. The supply slope c is positive. Those lines intersect at the competitive 
price, where supply equals demand. To find the difference equation, substitute 1 and 
2 into 3: 

Difference equation: -dP(t + 1)+ b = cP(t) 

Steady state price: -dP, + b = cP,. Thus P, = b/(c + d). 

If the price starts above P,, the difference equation brings it down. If below, the 
price goes up. When the price is P,, it stays there. This is not news-economic 
theory depends on approach to a steady state. But convergence only occurs if c < d. 
If supply is less sensitive than demand, the economy is stable. 

Blow-up example: c = 2, b = d = 1. The difference equation is -P(t + 1)+ 1 = 2P(t). 
From P(0) = 1 the price oscillates as it grows: P = - 1, 3, -5, 11, .... 

Stable example: c = 112, b = d = 1. The price moves from P(0) = 1 to P(m) = 213: 

1 3 5  2 
-P(t + 1)+ 1 = -

1 
P(t) yields P = 1' - - - 2' 4' 8' "" approaching -.

2 3 

Increasing d gives greater stability. That is the effect of price supports. For d = 0 
(fixed demand regardless of price) the economy is out of control. 

THE MATHEMATICS OF FINANCE 

It would be a pleasure to make this supply-demand model more realistic-with 
curves, not straight lines. Stability depends on the slope-calculus enters. But we 
also have to be realistic about class time. I believe the most practical application is 
to solve the fundamentalproblems offinance. Section 6.3 answered six questions about 
continuous interest. We now answer the same six questions when the annual rate is 
x = .05 = 5% and interest is compounded n times a year. 
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First we compute eflective rates, higher than .05 because of compounding: 

compounded quarterly ( 1 + - = 1.0509 [effective rate .0509 = 5.09%].:T 
compounded continuously eno5= 1 .O5 13 [effective rate 5.13%] 

Now come the six questions. Next to the new answer (discrete) we write the old 
answer (continuous). One is algebra, the other is calculus. The time period is 20 years, 
so simple interest on yo would produce (.05)(20)(yo). That equals yo -money doubles 
in 20 years at 5% simple interest. 

Questions 1and 2 ask for the future value y and present value yo with compound 
interest n times a year: 

y = e(~OS,(20)yo1. y growing from yo: y = (1 + yonyo 
2. deposit yo to reach y: yo = (1 + :F20ny 

yo = e-(-05)(20)y 

Each step multiplies by a = (1 + .05/n). There are 20n steps in 20 years. Time goes 
backward in Question 2. We divide by the growth factor instead of multiplying. The 
future value is greater than the present value (unless the interest rate is negative!). As 
n + GO the discrete y on the left approaches the continuous y on the right. 

Questions 3 and 4 connect y to s (with yo = 0 at the start). As soon as each s is 
deposited, it starts growing. Then y = s + as + a2s+ --. 

3. y growing from deposits s: y = s[ 
(1 + .05/n)20n- I] 

.05/n 

y = s  [e(.05)(20) - I] 

.05 

4. deposits s to reach y: 

Questions 5 and 6 connect yo to s. This time y is zero-there is nothing left at  the 
end. Everything is paid. The deposit yo is just enough to allow payments of s. This 
is an annuity, where the bank earns interest on your yo while it pays you s (n times 
a year for 20 years). So your deposit in Question 5 is less than 20ns. 

Question 6 is the opposite-a loan. At the start you borrow yo (instead of giving 
the bank yo). You can earn interest on it as you pay it back. Therefore your payments 
have to total more than yo. This is the calculation for car loans and mortgages. 

5. Annuity: Deposit yo to receive 20n payments of s: 

6. Loan:. Repay yo with 20n payments of s: 

Questions 2 ,4 ,6  are the inverses of 1,3,5. Notice the pattern: There are three num- 
bers y, yo, and s. One of them-is zero each time. If all three are present, go back to 
equation (9). 

The algebra for these lines is in the exercises. I t  is not calculus because At is not dt. 
All factors in brackets [ 1are listed in tables, and the banks keep copies. It might 
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also be helpful to know their symbols. If a bank has interest rate i per period over 
N periods, then in our notation a = 1 + i = 1 + .05/n and t = N = 20n: 

future value of yo = $1 (line 1):y(N) = (1 + i)N 

present value of y = $1 (line 2): yo = (1 + i)-N 

future value of s = $1 (line 3): y(N) = s~~= [(I + i)N- l]/i 

present value of s = $1 (line 5): yo = a~~= [l- (1 + i)-']/i 
To tell the truth, I never knew the last two formulas until writing this book. The 
mortgage on my home has N = (12)(25) monthly payments with interest rate i = 
.07/12. In 1972 the present value was $42,000 = amount borrowed. I am now going 
to see if the bank is honest.? 

Remark In many loans, the bank computes interest on the amount paid back 
instead of the amount received. This is called discounting. A loan of $1000 at 5% 
for one year costs $50 interest. Normally you receive $1000 and pay back $1050. 
With discounting you receive $950 (called the proceeds) and you pay back $1000. 
The true interest rate is higher than 5%-because the $50 interest is paid on the 
smaller amount $950. In this case the "discount rate" is 501950 = 5.26%. 

SCIENTIFIC COMPUTING: DIFFERENTIAL EQUATIONS BY DIFFERENCE EQUATIONS 

In biology and business, most events are discrete. In engineering and physics, time 
and space are continuous. Maybe at some quantum level it's all the same, but the 
equations of physics (starting with Newton's law F = ma) are differential equations. 
The great contribution of calculus is to model the rates of change we see in nature. 
But to solve that model with a computer, it needs to be made digital and discrete. 

These paragraphs work with dyldt = cy. It is the test equation that all analysts use, 
as soon as a new computing method is proposed. Its solution is y = ect, starting from 
yo = 1. Here we test Euler's method (nearly ancient, and not well thought of). He 
replaced dyldt by AylAt: 

The left side is dyldt, in the limit At +0. We stop earlier, when At > 0. 
The problem is to solve (13). Multiplying by At, the equation is 

y(t + At) = (1 + cAt)y(t) (with y(0) = 1). 

Each step multiplies by a = 1 + cAt, so n steps multiply by an: 

y = an= (1 + cAt)" at time nAt. (14) 
This is growth or decay, depending on a. The correct ectis growth or decay, depending 
on c. The question is whether an and eczstay close. Can one of them grow while the 
other decays? We expect the difference equation to copy y' = cy, but we might be 
wrong. 

A good example is y' = -y. Then c = - 1 and y = e-'-the true solution decays. 

?It's not. s is too big. I knew it. 



The calculator gives the following answers anfor n = 2, 10,20: 

The big step At = 3 shows total instability (top row). The numbers blow up when 
they should decay. The row with At = 1 is equally useless (all zeros). In practice the 
magnitude of cAt must come down to .10 or .05. For accurate calculations it would 
have to be even smaller, unless we change to a better difference equation. That is the 
right thing to do. 

Notice the two reasonable numbers. They are .35 and .36, approaching e- ' = .37. 
They come from n = 10 (with At = 1/10) and n = 20 (with At = 1/20). Those have the 
same clock time nAt = 1: 

The main diagonal of the table is executing (1 + xln)" -, e" in the case x = - 1. 

Final question: How quickly are .35 and .36 converging to e-' = .37? With At = .10 
the error is .02. With At = .05 the error is .01. Cutting the time step in half cuts the 
error in half. We are not keeping enough digits to be sure, but the error seems close 
to *At. To test that, apply the "quick method" and estimate an= (1 -Atr from its 
logarithm: 

=ln(1- Atr = n ln(1- At) z n[- At -+ ( ~ t ) ~ ]- 1-fAt. 

The clock time is nAt = 1. Now take exponentials of the far left and right: 

The difference between anand e- ' is the last term *Ate- '. Everything comes down 
to one question: Is that error the same as *At? The answer is yes, because e-'12 is 
115. If we keep only one digit, the prediction is perfect! 

That took an hour to work out, and I hope it takes longer than At to read. I wanted 
you to see in use the properties of In x and e". The exact property In an= n In a came 
first. In the middle of (15) was the key approximation ln(1 + x) z x -fx2, with x = 
-At. That x2 term uses the second derivative (Section 6.4). At the very end came 
e " x l + x .  

A linear approximation shows convergence: (1 + x/n)" -,ex. A quadratic shows the 
error: proportional to At = l/n. It is like using rectangles for areas, with error propor- 
tional to Ax. This minimal accuracy was enough to define the integral, and here it is 
enough to define e. It is completely unacceptable for scientific computing. 

The trapezoidal rule, for integrals or for y' = cy, has errors of order (Ax)2 and (At)2. 
All good software goes further than that. Euler's first-order method could not predict 
the weather before it happens. 

t).Euler's Method for -dy = F(y, t): Y(' + At)-y(t) = ~ ( ~ ( t ) ,
dt At 
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6.6 EXERCISES 

Read-through questions 

The infinite series for e" is a . Its derivative is b .The 
denominator n! is called " c " and it equals d .At x = 
1 the series for e is e . 

To match the original definition of e, multiply out 
(1 + l/n)" = f (first three terms). As n + co those terms 
approach Q in agreement with e. The first three terms of 
(1 + xln)" are h . As n + co they approach 1 in 
agreement with ex. Thus (1 +xln)" approaches I . A 
quicker method computes ln(1 +xln)" x k (first term 
only) and takes the exponential. 

Compound interest (n times in one year at annual rate x) 
multiplies by ( I )". As n -+ co, continuous compounding 
multiplies by m .At x = 10% with continuous compound- 
ing, $1 grows to n in a year. 

The difference equation y(t + 1)=ay(t) yields fit) = o 
times yo. The equation y(t + 1) =ay(t) +s is solved by y = 
atyo+ $1 + a + -.-+at-']. The sum in brackets is P . 
When a = 1.08 and yo =0, annual deposits of s = 1 produce 
y = q after t years. If a =9 and yo =0, annual deposits 
of s = 6 leave r after t years, approaching y, = s . 
The steady equation y, =ay, +s gives y, = t . 

When i = interest rate per period, the value of yo =$1 after 
N periods is y(N) = u . The deposit to produce y(N) = 1 
is yo = v .The value of s = $1 deposited after each period 
grows to y(N) = w . The deposit to reach y(N) = 1 is s = 

x . 

Euler's method replaces y' =cy by Ay =cyAt. Each step 
multiplies y by Y . Therefore y at t = 1 is (1 + cAt)ll'yo, 
which converges to as At -+0. The error is proportional 
to A ,which is too B for scientific computing. 

1 Write down a power series y = 1 -x + .-.whose derivative 
is -y. 

2 Write down a power series y = 1 + 2x + .--whose deriva- 
tive is 2y. 

3 Find two series that are equal to their second derivatives. 

4 By comparing e = 1 + 1 +9 +4 + + -.. with a larger 
series (whose sum is easier) show that e < 3. 

5 At 5% interest compute the output from $1000 in a year 
with 6-month and 3-month and weekly compounding. 

6 With the quick method ln(1 +x) z x, estimate ln(1- lln)" 
and ln(1 + 2/n)". Then take exponentials to find the two limits. 

7 With the slow method multiply out the three terms of 
(1 -$)2 and the five terms of (1 -$I4.What are the first three 
terms of (1 - l/n)", and what are their limits as n -+ oo? 

8 The slow method leads to 1 - 1 + 1/2! - 1/3! + -.-for the 

limit of (1 - l/n)". What is the sum of this infinite series -
the exact sum and the sum after five terms? 

9 Knowing that (1 + l/n)" -+ e, explain (1 + l/n)2n-+ e2 and 
(1 + 2/N)N-+e2. 

10 What are the limits of (1 + l/n2)" and (1 + l/n)"*? 
OK to use a calculator to guess these limits. 

11 (a) The power (1 + l/n)" (decreases) (increases) with n, as 
we compound more often. (b) The derivative of f(x)= 
x ln(1 + llx), which is ,should be (<0)(> 0). This is 
confirmed by Problem 12. 

12 Show that ln(1 + l/x) > l/(x + 1) by drawing the graph of 
llt. The area from t = 1 to 1 + l /x is . The rectangle 
inside it has area . 
13 Take three steps of y(t + 1) =2y(t) from yo = 1. 

14 Take three steps of y(t + 1)= 2y(t) + 1 from yo =0. 

Solve the difference equations 15-22. 

In 23-26, which initial value produces y, =yo (steady state)? 

23 y(t + 1) =2y(t) -6 24 y(t + 1) =iy(t) -6 

25 y(t + 1)= -y(t) + 6 26 y(t + 1)= -$y(t)+ 6 

27 In Problems 23 and 24, start from yo =2 and take three 
steps to reach y,. Is this approaching a steady state? 

28 For which numbers a does (1 -at)/(l-a) approach a limit 
as t -+ oo and what is the limit? 

29 The price P is determined by supply =demand or 
-dP(t + 1) + b =cP(t). Which price P is not changed from 
one year to the next? 

30 Find P(t) from the supply-demand equation with c = 1, 
d =2, b = 8, P(0) =0. What is the steady state as t -+ co? 

Assume 10% interest (so a = 1 + i = 1.1) in Problems 31-38. 

31 At 10% interest compounded quarterly, what is the effec- 
tive rate? 

32 At 10% interest compounded daily, what is the effective 
rate? 

33 Find the future value in 20 years of $100 deposited now. 

34 Find the present value of $1000 promised in twenty years. 
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35 For a mortgage of $100,000 over 20 years, what is the do you still owe after one month (and after a year)?
monthly payment?

41 Euler charges c = 100% interest on his $1 fee for discover-
36 For a car loan of $10,000 over 6 years, what is the monthly ing e. What do you owe (including the $1) after a year with
payment? (a) no compounding; (b) compounding every week; (c) con-

tinuous compounding?37 With annual compounding of deposits s = $1000, what is
the balance in 20 years? 42 Approximate (1 + 1/n)" as in (15) and (16) to show that

you owe Euler about e - e/2n. Compare Problem 6.2.5.
38 If you repay s = $1000 annually on a loan of $8000, when
are you paid up? (Remember interest.) 43 My Visa statement says monthly rate = 1.42% and yearly

rate = 17%. What is the true yearly rate, since Visa com-39 Every year two thirds of the available houses are sold, and
pounds the interest? Give a formula or a number.1000 new houses are built. What is the steady state of the

housing market - how many are available? 44 You borrow yo = $80,000 at 9% to buy a house.

40 If a loan shark charges 5% interest a month on the $1000 (a) What are your monthly payments s over 30 years?
you need for blackmail, and you pay $60 a month, how much (b) How much do you pay altogether?
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This section combines ex with e - x. Up to now those functions have gone separate
ways-one increasing, the other decreasing. But two particular combinations have
earned names of their own (cosh x and sinh x):

ex + e - x
hyperbolic cosine cosh x- 

ex -
= hyperbolic sine sinh x 

e-x
= -

2 2

The first name rhymes with "gosh". The second is usually pronounced "cinch".
The graphs in Figure 6.18 show that cosh x > sinh x. For large x both hyperbolic

functions come extremely close to ½ex. When x is large and negative, it is e- x that
dominates. Cosh x still goes up to + 00 while sinh x goes down to - co (because
sinh x has a minus sign in front of e-x).

1 1 1 1
cosh x = eX+ e-x sinh x = -ex e

2 2 2 2
\ /I

1 1e-X 1 ex2 2

-1 1

Fig. 6.18 Cosh x and sinh x. The hyperbolic
functions combine 'ex and ½e- x. Louis Visitors Commission.

The following facts come directly from ((ex + e - x) and ½(ex - e-X):

cosh(- x) = cosh x and cosh 0 = 1 (cosh is even like the cosine)

sinh(- x) = - sinh x and sinh 0 = 0 (sinh is odd like the sine)

Fig. 6.19 Gateway Arch courtesy of the St.

I
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The graph of cosh x corresponds to a hanging cable (hanging under its weight).
Turned upside down, it has the shape of the Gateway Arch in St. Louis. That must
be the largest upside-down cosh function ever built. A cable is easier to construct
than an arch, because gravity does the work. With the right axes in Problem 55, the
height of the cable is a stretched-out cosh function called a catenary:

y = a cosh (x/a) (cable tension/cable density = a).

Busch Stadium in St. Louis has 96 catenary curves, to match the Arch.

The properties of the hyperbolic functions come directly from the definitions. There
are too many properties to memorize-and no reason to do it! One rule is the most
important. Every fact about sines and cosines is reflected in a corresponding fact about
sinh x and cosh x. Often the only difference is a minus sign. Here are four properties:

1. (cosh x)2 - (sinh x)2 = 1 instead of (cos x)2 + (sin x)2 = 1]

- 22

e- e2 xe x+2 -ex+2+e-2x 
ex 2 = 

Check: e-x 2 x 

2. dx d (cosh x) = sinh x instead of dxd (cos x) - sin x

3. d (sinh x) = cosh x like d sin x = cos x

4. f sinh x dx = cosh x + C and f cosh x dx = sinh x + C

t, sinh t)
t)

Fig. 6.20 The unit circle cos 2t + sin2t = 1 and the unit hyperbola cosh 2t - sinh 2t = 1.

Property 1 is the connection to hyperbolas. It is responsible for the "h" in cosh and
sinh. Remember that (cos x)2 + (sin x)2 = 1 puts the point (cos x, sin x) onto a unit
circle. As x varies, the point goes around the circle. The ordinary sine and cosine are
"circular functions." Now look at (cosh x, sinh x). Property 1 is (cosh x)2 - (sinh x) 2 =
1, so this point travels on the unit hyperbola in Figure 6.20.

You will guess the definitions of the other four hyperbolic functions:

sinh x ex - e-x cosh x ex + e-x
tanh x - - coth x - - -

cosh x ex + e - x sinh x ex - e - x

sech x 1 2 csch x 1 2

cosh x ex + e-x sinh x ex - e-x

I think "tanh" is pronounceable, and "sech" is easy. The others are harder. Their
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properties come directly from cosh2x- sinh2x= 1. Divide by cosh2x and sinh2x: 

1 - tanh 2x = sech2x and coth2x - 1 =csch2x 

(tanh x)' = sech2x and (sech x)' = -sech x tanh x 

sinh x1tanh x dx =S=dx = ln(cosh x) + C. 

INVERSE HYPERBOLIC FUNCTIONS 

You remember the angles sin-'x and tan-'x and sec-'x. In Section 4.4 we 
differentiated those inverse functions by the chain rule. The main application was to 
integrals. If we happen to meet jdx/(l+ x2), it is tan-'x + C. The situation for 
sinh- 'x and tanh- 'x and sech- 'x is the same except for sign changes -which are 
expected for hyperbolic functions. We write down the three new derivatives: 

y = sinh-'x (meaning x = sinh y) has 9= 
1 

dx J 2 T i  

y = tanh-'x (meaning x = tanh y) has 9= -
1 

dx 1 - x2 

-1 
y = sech -'x (meaning x = sech y) has d y  = 

dx X J i 7  

Problems 44-46 compute dyldx from l/(dx/dy). The alternative is to use logarithms. 
Since In x is the inverse of ex, we can express sinh-'x and tanh-'x and sech-'x as 
logarithms. Here is y = tanh- 'x: 

The last step is an ordinary derivative of 4 ln(1 + x) - ln(1 - x). Nothing is new 
except the answer. But where did the logarithms come from? In the middle of the 
following identity, multiply above and below by cosh y: 

1 + x - 1 + tanh y cosh y + sinh y eY 
- e2y.

1 - x 1- tanh y cosh y - sinh y e-y 

Then 2y is the logarithm of the left side. This is the first equation in (4), and it is the 
third formula in the following list: 

Remark 1 Those are listed onlyfor reference. If possible do not memorize them. The 
derivatives in equations (I), (2), (3) offer a choice of antiderivatives - either inverse 
functions or logarithms (most tables prefer logarithms). The inside cover of the book 
has 1% = f l n [ E ]  + C (in place of tanh- 'x + C). 

Remark 2 Logarithms were not seen for sin- 'x and tan- 'x and sec- 'x. You might 
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wonder why. How does it happen that tanh-'x is expressed by logarithms, when the 
parallel formula for tan-lx was missing? Answer: There must be a parallel formula. 
To display it I have to reveal a secret that has been hidden throughout this section. 

The secret is one of the great equations of mathematics. What formulas for cos x 
and sin x correspond to &ex+ e-x) and &ex- e-x)? With so many analogies 
(circular vs. hyperbolic) you would expect to find something. The formulas do exist, 
but they involve imaginary numbers. Fortunately they are very simple and there is 
no reason to withhold the truth any longer: 

1 1 .
c o s x = - ( e i x + e i x )  and s i n ~ = - ( e ' ~ - - e - ' ~ ) .  ( 5 )2 2i 

It is the imaginary exponents that kept those identities hidden. Multiplying sin x by 
i and adding to cos x gives Euler's unbelievably beautiful equation 

cos x + i sin x = eiX. (6) 

That is parallel to the non-beautiful hyperbolic equation cosh x + sinh x = ex. 
I have to say that (6) is infinitely more important than anything hyperbolic will 

ever be. The sine and cosine are far more useful than the sinh and cosh. So we end 
our record of the main properties, with exercises to bring out their applications. 

Read-through questions 

Cosh x = a and sinh x = b and cosh2x - sinh2x= 

. Their derivatives are d and e and f . 
The point (x, y) = (cosh t ,  sinh t )  travels on the hyperbola 

g . A cable hangs in the shape of a catenary y = h . 

The inverse functions sinh-'x and t a n h l x  are equal to 
ln[x + ,/x2 + 11 and 4ln I . Their derivatives are i 
and k . So we have two ways to write the anti I . The 
parallel to cosh x + sinh x = ex is Euler's formula m . 
The formula cos x = $(eix+ ePix) involves n exponents. 
The parallel formula for sin x is o . 

1 Find cosh x + sinh x, cosh x - sinh x, and cosh x sinh x. 

2 From the definitions of cosh x and sinh x, find their deriv- 
atives. 

3 Show that both functions satisfy y" = y. 

4 By the quotient rule, verify (tanh x)' = sech2x. 

5 Derive cosh2x + sinh2x = cosh 2x, from the definitions. 

6 From the derivative of Problem 5 find sinh 2x. 

7 The parallel to (cos x + i sin x r  = cos nx + i sin nx is a 
hyperbolic formula (cosh x + sinh x)" = cosh nx + . 
8 Prove sinh(x + y) = sinh x cosh y + cosh x sinh y by 

changing to exponentials. Then the x-derivative gives 
cosh(x + y) = 

Find the derivatives of the functions 9-18: 

9 cosh(3x + 1) 10 sinh x2 

11 l/cosh x 12 sinh(1n x) 

13 cosh2x + sinh2x 14 cosh2x - sinh2x 

15 tanh ,,/= 16 (1 + tanh x)/(l - tanh x) 

17 sinh6x 18 ln(sech x + tanh x) 

19 Find the minimum value of cosh(1n x) for x > 0. 

20 From tanh x = +find sech x, cosh x, sinh x, coth x, csch x. 

21 Do the same if tanh x = - 12/13. 

22 Find the other five values if sinh x = 2. 

23 Find the other five values if cosh x = 1. 

24 Compute sinh(1n 5) and tanh(2 In 4). 

Find antiderivatives for the functions in 25-32: 

25 cosh(2x + 1)  26 x cosh(x2) 

27 cosh2x sinh 

sinh x ex+ ePx
30 ~ 0 t hx = ----

29 1 +cosh x ex - e-" 

31 sinh x + cosh x 32 (sinh x + cosh x)" 
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33 The triangle in Figure 6.20 has area 3cosh t sinh t. 
(a) Integrate to find the shaded area below the hyperbola 
(b)For the area A in red verify that dA/dt =4 
(c) Conclude that A =it + C and show C =0. 

Sketch graphs of the functions in 34-40. 

34 y = tanh x (with inflection point) 

35 y =coth x (in the limit as x 4 GO) 

36 y =sech x 

38 y=cosh-lx for x 3 1 

39 y =sech- 'x for 0 c x d 1 

40 = tanh-'x = - In - for lxlc 1 : (i':) 
41 (a) Multiplying x =sinh y =b(ey -e-Y) by 2eY gives 

(eq2-248)  - 1=0. Solve as a quadratic equation for eY. 
(b)Take logarithms to find y =sinh - 'x and compare with 
the text. 

42 (a) Multiplying x =cosh y =i ( 8  +ebY) by 2ey gives 
( e ~ ) ~-2x(e") + 1=0. Solve for eY. 
(b)Take logarithms to find y =cosh- 'x and compare with 
the text. 

43 Turn (4) upside down to prove y' = - l/(l -x2), if y = 
coth- 'x. 

44 Compute dy/dx = I/,/= by differentiating x =sinh y 
and using cosh2 y -sinh2y= 1. 

45 Compute dy/dx = l/(l -x2) if y =tanh- 'x by differen- 
tiating x = tanh y and using sech2y + tanh2y= 1. 

46 Compute dyldx = -l / x J E ?  for y =sech- 'x, by 
differentiating x =sech y. 

From formulas (I), (2), (3) or otherwise, find antiderivatives in 
47-52: 

54 A falling body with friction equal to velocity squared 
obeys dvldt =g -v2. 

(a) Show that v(t) =&tanh &t satisfies the equation. 
(b)Derive this v yourself, by integrating dv/(g -v2)=dt. 
(c) Integrate v(t) to find the distance f(t). 

55 A cable hanging under its own weight has slope S =dyldx 
that satisfies dS/dx =c d m .  The constant c is the ratio of 
cable density to tension. 

(a) Show that S =sinh cx satisfies the equation. 
(b)Integrate dyldx =sinh cx to find the cable height y(x), 
if y(0)= llc. 
(c) Sketch the cable hanging between x = -L and x =L 
and find how far it sags down at x =0. 

56 The simplest nonlinear wave equation (Burgers' equation) 
yields a waveform W(x) that satisfies W" = WW' -W'. One 
integration gives W' =3w2-W. 

(a) Separate variables and integrate: 
dx=dw/(3w2- W)=-dW/(2- W)-dW/W. 
(b) Check W' =3W2-W. 

57 A solitary water wave has a shape satisfying the KdV 
equation y" =y' -6yy'. 

(a) Integrate once to find y". Multiply the answer by y'. 
(b) Integrate again to find y' (all constants of integration 
are zero). 
(c) Show that y =4 sech2(x/2) gives the shape of the 
"soliton." 

58 Derive cos ix =cosh x from equation (5). What is the 
cosine of the imaginary angle i = 

59 Derive sin ix = i sinh x from (5). What is sin i? 

60 The derivative of eix =cos x + i sin x is 
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