
C H A P T E R  14 

Multiple Integrals 

14.1 Double Integrals 4 

This chapter shows how to integrate functions of two or more variables. First, a 
double integral is defined as the limit of sums. Second, we find a fast way to compute 
it. The key idea is to replace a double integral by two ordinary "single" integrals. 

The double integral Sf f(x, y)dy dx starts with 1f(x, y)dy. For each fixed x we integ- 
rate with respect to y. The answer depends on x. Now integrate again, this time with 
respect to x. The limits of integration need care and attention! Frequently those limits 
on y and x are the hardest part. 

Why bother with sums and limits in the first place? Two reasons. There has to be 
a definition and a computation to fall back on, when the single integrals are difficult 
or impossible. And also-this we emphasize-multiple integrals represent more than 
area and volume. Those words and the pictures that go with them are the easiest to 
understand. You can almost see the volume as a "sum of slices" or a "double sum of 
thin sticks." The true applications are mostly to other things, but the central idea is 
always the same: Add up small pieces and take limits. 

We begin with the area of R and the volume of by double integrals. 

A LIMIT OF SUMS 

The graph of z =f(x, y) is a curved surface above the xy plane. At the point (x, y) in 
the plane, the height of the surface is z. (The surface is above the xy plane only when 
z is positive. Volumes below the plane come with minus signs, like areas below the 
x axis.) We begin by choosing a positive function-for example z = 1+ x2 + y2. 

The base of our solid is a region R in the xy plane. That region will be chopped 
into small rectangles (sides Ax and Ay). When R itself is the rectangle 0d x < 1, 
0< y < 2, the small pieces fit perfectly. For a triangle or a circle, the rectangles miss 
part of R. But they do fit in the limit, and any region with a piecewise smooth 
boundary will be acceptable. 

Question What is the volume above R and below the graph of z =Ax, y)? 
Answer It is a double integral-the integral of f(x, y) over R. To reach it we begin 
with a sum, as suggested by Figure 14.1. 
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area AA 

Fig. 14.1 Base R cut into small pieces AA. Solid V cut into thin sticks AV = z A A. 

For single integrals, the interval [a, b] is divided into short pieces of length Ax. 
For double integrals, R is divided into small rectangles of area AA = (Ax)(Ay). Above 
the ith rectangle is a "thin stick" with small volume. That volume is the base area 
AA times the height above it-except that this height z =f(x, y) varies from point to 
point. Therefore we select a point (xi, y,) in the ith rectangle, and compute the volume 
from the height above that point: 

volume of one stick =f(xi, yi)AA volume of all sticks = 1f(xi, yi)AA. 

This is the crucial step for any integral-to see it as a sum of small pieces. 
Now take limits: Ax -+ 0 and Ay -+ 0. The height z =f(x, y) is nearly constant over 

each rectangle. (We assume that f is a continuous function.) The sum approaches a 
limit, which depends only on the base R and the surface above it. The limit is the 
volume of the solid, and it is the double integral of f(x, y) over R: 

J J Rf(x, y) dA = lim 1f(xi, yi)AA. 
A x  -t 0 
Ay+O 

To repeat: The limit is the same for all choices of the rectangles and the points (xi, yi). 
The rectangles will not fit exactly into R, if that base area is curved. The heights are 
not exact, if the surface z =f(x, y) is also curved. But the errors on the sides and top, 
where the pieces don't fit and the heights are wrong, approach zero. Those errors are 
the volume of the "icing" around the solid, which gets thinner as Ax -+ 0 and Ay -+ 0. 
A careful proof takes more space than we are willing to give. But the properties of 
the integral need and deserve attention: 

1. Linearity: jj(f + g)dA = jj f d~ + j j g  dA 

2. Constant comes outside: jj cf(x, y)dA = c jj f(x, y)dA 

3. R splits into S and T(not overlapping): ]jf d~ = jj f d ~+ jj f d ~ .  
R S T 

In 1 the volume under f + g has two parts. The "thin sticks" of height f + g split into 
thin sticks under f and under g. In 2 the whole volume is stretched upward by c. In 
3 the volumes are side by side. As with single integrals, these properties help in 
computations. 

By writing dA, we allow shapes other than rectangles. Polar coordinates have an 
extra factor r in dA = r dr do. By writing dx dy, we choose rectangular coordinates 
and prepare for the splitting that comes now. 
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SPLITTING A DOUBLE INTEGRAL INTO TWO SINGLE INTEGRALS

The double integral JSf(x, y)dy dx will now be reduced to single integrals in y and
then x. (Or vice versa. Our first integral could equally well be ff(x, y)dx.) Chapter 8
described the same idea for solids of revolution. First came the area of a slice, which
is a single integral. Then came a second integral to add up the slices. For solids
formed by revolving a curve, all slices are circular disks-now we expect other shapes.

Figure 14.2 shows a slice of area A(x). It cuts through the solid at a fixed value of
x. The cut starts at y = c on one side of R, and ends at y = d on the other side. This
particular example goes from y = 0 to y = 2 (R is a rectangle). The area of a slice is
the y integral of f(x, y). Remember that x is fixed and y goes from c to d:

A(x) = area of slice = f(x, y)dy (the answer is a function of x).

EXAMPLE 1 A = (1 + x2 + y2)dy =[y 
y= 0 13 

+ x2y+ -
=O 

2 2x2 8
= 3

This is the reverse of a partial derivative! The integral of x2dy, with x constant, is
x2y. This "partial integral" is actually called an inner integral. After substituting the
limits y = 2 and y = 0 and subtracting, we have the area A(x) = 2 + 2x 2 + 1. Now the
outer integral adds slices to find the volume f A(x) dx. The answer is a number:

S8) [ 2x3  81' 2 8 16
volume = 2 + 2 x2 + dx= 2x + ~ + 8x = 2+ - + 8-

=o 3 = 3 3 3 3 3
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Fig. 14.2 A slice of V at a fixed x has area A(x) = ff(x, y)dy.

To complete this example, check the volume when the x integral comes first:

inner integral = (1 + x y2)dx =x + x y2 = +2
x=0 3 x=0 3

S4 1 y2 8 8 16

outer integral - + y2 

3 dy = 3 y+ 3 1-y3]Y =2 = 8 Y=O 3 3 163
The fact that double integrals can be split into single integrals is Fubini's Theorem.

14A If f(x, y) is continuous on the rectangle R, then

Sf(x, y)dA = [ f(x, y)dy dx = d [b f(x, y)dx dy. (2)
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The inner integrals are the cross-sectional areas A(x) and a(y) of the slices. The outer
integrals add up the volumes A(x)dx and a(y)dy. Notice the reversing of limits.

Normally the brackets in (2) are omitted. When the y integral is first, dy is written
inside dx. The limits on y are inside too. I strongly recommend that you compute the
inner integral on one line and the outer integral on a separate line.

EXAMPLE 2 Find the volume below the plane z = x - 2y and above the base
triangle R.

The triangle R has sides on the x and y axes and the line x + y = 1. The strips in the
y direction have varying lengths. (So do the strips in the x direction.) This is the main
point of the example-the base is not a rectangle. The upper limit on the inner
integral changes as x changes. The top of the triangle is at y = 1 - x.

Figure 14.3 shows the strips. The region should always be drawn (except for
rectangles). Without a figure the limits are hard to find. A sketch of R makes it easy:

y goes from c = 0 to d = 1 - x. Then x goes from a = 0 to b = 1.

The inner integral has variable limits and the outer integral has constant limits:

inner: Y (x - 2y)dy= [xy y2 x - X)(1 - ) 2  -1+ 3x -2x 2

y=0

3 2 = 3 2 1
outer: (- + 3x - 2x2)dx= - x + x2  31 3 2 1

x=o 2 3  o 2 3 6

The volume is negative. Most of the solid is below the xy plane. To check the answer
- 6, do the x integral first: x goes from 0 to 1 - y. Then y goes from 0 to 1.

-Y 
inner: (x - 2y)dx = [x2 

I 
- 2xy 

1-Y 2(1 1 - y) - 2(1 - y)y= 1 - 3y + 5 2

1 5 1 3 ( 5 3 1 3 5 1

-=2 2 6 o 2 2 6 6 2

Same answer, very probably right. The next example computes ff 1 dx dy = area of R.

EXAMPLE 3 The area of R is dy dx and also dx dy.
x=0 y=0 y=0 x=0

The first has vertical strips. The inner integral equals 1 - x. Then the outer integral
(of 1 - x) has limits 0 and 1, and the area is ½. It is like an indefinite integral inside
a definite integral.

y=4
y=4

y=l 3

2x 0

1

Y
x

1 r=2

Fig. 14.3 Thin sticks above and below (Example 2). Reversed order (Examples 3 and 4).
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EXAMPLE 4 Reverse the order of integration in 

Solution Draw a figure! The inner integral goes from the parabola y = x2 up to 
the straight line y = 2x. This gives vertical strips. The strips sit side by side between 
x = 0 and x = 2. They stop where 2x equals x2, and the line meets the parabola. 

The problem is to put the x integral first. It goes along horizontal strips. On each 
line y = constant, we need the entry value of x and the exit value of x. From the figure, 
x goes from )y to &.Those are the inner limits. Pay attention also to the outer 
limits, because they now apply to y. The region starts at y = 0 and ends at y = 4. 
No charlge in the integrand x3-that is the height of the solid: 

x3dy dx is reversed to (3) 

EXAMPLE 5 Find the volume bounded by the planes x = 0, y = 0, z = 0, and 
2x + y 4-z = 4. 

Solutiorr The solid is a tetrahedron (four sides). It goes from z = 0 (the xy plane) up 
to the plane 2x + y + z = 4. On that plane z = 4 - 2x - y. This is the height function 
f(x, y) to be integrated. 

Figure 14.4 shows the base R. To find its sides, set z = 0. The sides of R are the 
lines x == 0 and y = 0 and 2x + y = 4. Taking vertical strips, dy is inner: 

4 - 2 x  

inner: 1,= o  

outer: S' 
1

Questbn What is the meaning of the inner integral -(4 - 2 ~ ) ~
2 

16
Answer The first is A(x), the area of the slice. - is the solid volume. 

3 

Question What if the inner integral f(x, y)dy has limits that depend on y? 
Answer It can't. Those limits must be wrong. Find them again. 

density p = y 

Fig. 114.4 Tetrahedron in Example 5, semicircle in Example 6, triangle in Example 7. 

EXAMPLE 6 Find the mass in a semicircle 0 < y < ,/I - x2 if the density is p = y. 

This is a. new application of double integrals. The total mass is a sum of small masses 
(p times AA) in rectangles of area AA. The rectangles don't fit perfectly inside the 
semicircle R, and the density is not constant in each rectangle-but those problems 
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disappear in the limit. We are left with a double integral: 

Set p = y. Figure 14.4 shows the limits on x and y (try both d y  d x  and d x  dy):  

JF? V ' F j i  
m a s s M = j l  Iyz0 y d y d x  andalso M = I 1  j y d x d y .  

x =  -1 y=o -Ji--;+ 

The first inner integral is iy2.Substituting the limits gives g 1  -- x2) . The outer integral 
of $(1 - x 2 )  yields the total mass M = 3. 

The second inner integral is x y .  Substituting the limits on x gives . Then 
the outer integral is - $(I - y2)312.Substituting y = 1 and y = 0 yields M = . 
Remark This same calculation also produces the moment around the x axis, when 
the density is p = 1. The factor y is the distance to the x axis. The moment is M x  = 

y d A  = 5.Dividing by the area of the semicircle (which is 4 2 ) locates the centroid: 
2 = 0 by symmetry and 

moment - 213 - 4 y = height of centroid = -----
area 7112 37~' ( 5 )  

This is the "average height" of points inside the semicircle, found earlier in 8.5. 

EXAMPLE 7 Integrate 1::; 1:::
 cos x 2 d x  d y  avoiding the impossible cos x 2  d x .  

This is a famous example where reversing the order makes the calculation possible. 
The base R is the triangle in Figure 14.4 (note that x goes from y to 1). In the opposite 
order y goes from 0 to x. Then I cos x 2 d y  = x cos x2 contains the factor x that we 
need: 

outer integral: x cos x 2 d x  = [f sin x2]A  = $ sin 1. 
0 

14.1 EXERCISES 
Read-through questions (inner) limits on x are u . Now the strip is v and the 

outer integral is w . When the density is p(x, y), the total The double integral IS, f ( x ,  y)dA gives the volume between R 
mass in the region R is SS x . The moments are M y= and a . The base is first cut into small b of area A A.  

The volume above the ith piece is approximately c . The 
Y and M x  = z . The centroid has 2 = M,/M. 

limit of the sum d is the volume integral. Three properties 
of double integrals are e (linearity) and f and 

Compute the double integrals 1-4 by two integrations. 
9. 


If R is the rectangle 0 < x < 4,4  < y < 6,  the integral Sf x dA 
can be computed two ways. One is SSx dy dx, when the P O  

inner integral is h 1: = i . ~h~ outer integral gives 
2 c2' je 

r 2 d i  dy and j 1  jx: y2dx dy 

1; = k . When the x integral comes first it equals 2xy dx dy and 
y = 2  x = ll x dx = I 1, = m . Then the y integral equals 

n . This is the volume between o (describe V). 
and j121; dy dx / (x  + y)l

The area of R is jl P dy dx. When R is the triangle 
between x = 0, y = 2x, and y = 1, the inner limits on y are 
s . This is the length of a r strip. The (outer) limits 4 jol j: yexydx dy and j:on x are s . The area is t . In the opposite order, the 1 

I 
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In 5-10, draw the region and compute the area. 

In 11-16 reverse the order of integration (and find the new 
limits) in 5-10 respectively. 

In 17-24 find the limits on II dy dx and Jjdx dy. Draw R and 
compute its area. 

17 R = triangle inside the lines x =0, y = 1, y =2x. 

18 R = triangle inside the lines x = - 1, y =0, x +y =0. 

19 R = triangle inside the lines y =x, y = -x, y = 3. 

20 R = triangle inside the lines y =x, y =2x, y =4. 

21 R = triangle with vertices (0, O), (4,4), (4, 8). 

22 R = triangle with vertices (0, O), (-2, -I), (1, -2). 

23 R = triangle with vertices (0, O), (2, O), (1, b). Here b > 0. 

*24 R = triangle with vertices (0, 0), (a, b), (c, d). The sides are 
y =bxla, y =dxlc, and y =b +(x -a)(d -b)/(c-a). Find 
~ = J j ' d y d x  whenO<a<c, O < d < b .  

25 Evaluate Cjl a2f/axay dr a. 

26 Evaluate 1; 1; af/dx dx dy. 

In 27-28, divide the unit square R into triangles S and T and 
verify jJRf d~ =JJs f d~ +11, f d ~ .  

29 The area under y =f(x) is a single integral from a to b or 
a double integral ( jnd  the limits): 

f(x) dx = 1 dy dx. lab ll 


30 Find the limits and the area under y = 1 -x2: 

(1 -x2) dx and 1l1 dx dy (reversed from 29). 

31 A city inside the circle x2 +y2 = 100 has population den- 
sity p(x, y) = 10(100-x2 -y2). Integrate to find its pop- 
ulation. 

32 Find the volume bounded by the planes x =0, y =0, 
z=0,  and a x +  by+cz= 1. 

In 33-34 the rectangle with corners (1, I), (1, 3), (2, I), (2, 3) has 
density p(x, y) =x2. The moments are M y  =Jlxp dA and 
Mx =II YP dA- 

33 Find the mass. 34 Find the center of mass. 

In 35-36 the region is a circular wedge of radius 1 between the 
lines y =x and y = -x. 

35 Find the area. 36 Find the centroid (2,j ) .  

37 Write a program to compute IAItf(x, y)dx dy by the mid- 
point rule (midpoints of n2 small squares). Which f(x, y) are 
integrated exactly by your program? 

38 Apply the midpoint code to integrate x2 and xy and y2. 
The errors decrease like what power of Ax =Ay = 1/n? 

Use the program to compute the volume under f(x, y) in 39-42. 
Check by integrating exactly or doubling n. 

39 flx, y) = 3x +4y + 5 40 f(x, y) = 1/J= 
41 f(x, y) =xY 42 flx, y) =ex sin ny 

43 In which order is xydx dy = xYdy dx easier to integ- 
rate over the square 0 <x < 1,0 <y < l ?  By reversing order, 
integrate (x- l)/ln x from 0 to 1-its antiderivative is 
unknown. 

44 Explain in your own words the definition of the 
double integral of f(x, y) over the region R. 

45 x yiAA might not approach y dA if we only know that 
A A +0. In the square 0<x, y < 1, take rectangles of sides 
Ax and 1 (not Ax and Ay). If (xi, yi) is a point in the rectangle 
where yi= 1, then x y i A A =  . But j JydA= 

14.2 Change to Better Coordinates 

You don't go far with double integrals before wanting to change variables. Many 
regions simply do not fit with the x and y axes. Two examples are in Figure 14.5, 
a tilted square and a ring. Those are excellent shapes-in the right coordinates. 
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We have to be able to answer basic questions like these: 

Find the area !.I dA and moment x dA and moment of inertia SS x2 dA. [.I 

The problem is: What is dA? We are leaving the xy variables where dA = dx dy. 

The reason for changing is this: The limits of integration in the y direction are 
miserable. I don't know them and I don't want to know them. For every x we would 
need the entry point P of the line x = constant, and the exit point Q. The heights of 
P and Q are the limits on Jdy, the inner integral. The geometry of the square and 
ring are totally missed, if we stick rigidly to x and y. 

Fig. 14.5 Unit square turned through angle a. Ring with radii 4 and 5. 

Which coordinates are better? Any sensible person agrees that the area of the tilted 
square is 1. "Just turn it and the area is obvious." But that sensible person may not 
know the moment or the center of gravity or the moment of inertia. So we actually 
have to do the turning. 

The new coordinates u and v are in Figure 14.6a. The limits of integration on v are 
0 and 1. So are the limits on u. But when you change variables, you don't just change 
limits. Two other changes come with new variables: 

1. The small area dA = dx dy becomes dA = du dv. 
2. The integral of x becomes the integral of . 

Substituting u = in a single integral, we make the same changes. Limits x = 0 and 
x = 4 become u = 0 and u = 2. Since x is u2, dx is 2u du. The purpose of the change 
is to find an antiderivative. For double integrals, the usual purpose is to improve the 
limits-but we have to accept the whole package. 

To turn the square, there are formulas connecting x and y to u and 1.1. The geometry 
is clear-rotate axes by x-but it has to be converted into algebra: 

u = s cos x + j. sin x x = u cos x - c sin x 

r = -s sin x + j9cos x 
and in reverse 

y = u sin x + c cos X. 
( 1 )  

Figure 14.6 shows the rotation. As points move, the whole square turns. A good way 
to remember equation (1) is to follow the corners as they become (1,O) and (0, 1). 

The change from JJ x dA to Jl du dl: is partly decided by equation (1). It 
gives x as a function of u and v.  We also need dA. For a pure rotation the first guess 
is correct: The area dx dy equals the area du dv. For most changes of variable this is 
false. The general formula for dA comes after the examples. 
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= cosa, = s ina  goes to u = I ,  v = o( Z  I 

Fig. 14.6 Change of coordinates-axes turned by cr. For rotation dA is du dv. 

EXAMPLE I Find jj dA and jj x dA and 2 and also jj x2 dA for the tilted square. 

Solution The area of the square is 5; SA du dv = 1. Notice the good limits. Then 

J j x d ~ = j A j ; ( ~cos a -  v sin a)du d v = &  cos a - &  sin a. (2) 

This is the moment around the y axis. The factors $ come from &u2 and iv2.  The x 
coordinate of the center of gravity is 

. = j! x d~ ,/ !!d~ = (' cos r - i sin r ) / l .  

Similarly the integral of y leads to j . The answer is no mystery-the point (2, j )  is 
at the center of the square! Substituting x = u cos a - v sin a made x dA look worse, 
but the limits 0 and 1 are much better. 

The moment of inertia I ,  around the y axis is also simplified: 

cos2a cos a sin a +-sin2aj j ,  lo1
I1= (u cos a - v sin aydu dv = -
3 

-
2 3 .  (3) 

You know this next fact but I will write it anyway: The answers don't contain u or v. 
Those are dummy variables like x and y. The answers do contain a, because the 
square has turned. (The area is fixed at 1.) The moment of inertia I, = jj y2 dA is the 
same as equation (3) but with all plus signs. 

Question The sum I ,  + I ,  simplifies to 5 (a constant). Why no dependence on a? 
Answer I ,  + I ,  equals I,. This moment of inertia around (0,O) is unchanged by 
rotation. We are turning the square around one of its corners. 

CHANGE TO POLAR COORDINATES 

The next change is to I. and 0. A small area becomes dA = r dr d0 (definitely not dr do). 
Area always comes from multiplying two lengths, and d0 is not a length. Figure 14.7 
shows the crucial region-a "polar rectangle" cut out by rays and circles. Its area 
AA is found in two ways, both leading to r dr do: 

(Approximate) The straight sides have length Ar. The circular arcs are 
ci'ose to rA0. The angles are 90". So AA is close to (Ar)(rAO). 

(Exact) A wedge has area ir2AB. The difference between wedges is AA: 
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The exact method places r dead center (see figure). The approximation says: Forget
the change in rAO as you move outward. Keep only the first-order terms.

A third method is coming, which requires no picture and no geometry. Calculus
always has a third method! The change of variables x = r cos 0, y = r sin 0 will go
into a general formula for dA, and out will come the area r dr dO.

2x

-x

'4 5

rr
Fig. 14.7 Ring and polar rectangle in xy and rO, with stretching factor r = 4.5.

EXAMPLE 2 Find the area and center of gravity of the ring. Also find fJx 2dA.

Solution The limits on r are 4 and 5. The limits on 0 are 0 and 2in. Polar coordinates
are perfect for a ring. Compared with limits like x = y2, ,25- the change to r dr dO
is a small price to pay:

2 a 5
area= f fr drdO=2[r2]r = n52-7r42= 9-.

04

The 0 integral is 27r (full circle). Actually the ring is a giant polar rectangle. We could
have used the exact formula r Ar AO, with AO = 27r and Ar = 5 - 4. When the radius
r is centered at 4.5, the product r Ar AO is (4.5)(1)(27r) = 97r as above.

Since the ring is symmetric around (0, 0), the integral of x dA must be zero:

2n 5
j x dA = f J (r cos O)r dr dO = jr [sin ]"=O0.
R 04

Notice r cos 0 from x-the other r is from dA. The moment of inertia is

JJ 
2n 5 27c

x2dA= J r2cos20 r dr dO= •ir 4 cos2 0 dB = 4(5 - 4')n.
R 0 4 0

J 
This 0 integral is in not 2·n, because the average of cos20 is ½ not 1.

For reference here are the moments of inertia when the density is p(x, y):

I, = f x 2p dA Ix = ffy 2p dA Io = fir2p dA = polar moment = Ix + I,. (4)

EXAMPLE 3 Find masses and moments for semicircular plates: p = 1 and p = 1 - r.

Solution The semicircles in Figure 14.8 have r = 1. The angle goes from 0 to 7r
(the upper half-circle). Polar coordinates are best. The mass is the integral of the
density p:

M = r dr dO = ()(7r) and M= S J(1 - r)r dr dO= ()(r).
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The first mass 7r/2 equals the area (because p = 1). The second mass 1r/6 is smaller
(because p < 1). Integrating p = 1 is the same as finding a volume when the height is
z = 1 (part of a cylinder). Integrating p = 1 - r is the same as finding a volume when
the height is z = 1 - r (part of a cone). Volumes of cones have the extra factor ½.

The center of gravity involves the moment Mx = JJyp dA. The distance from the
x axis is y, the mass of a small piece is p dA, integrate to add mass times distance.
Polar coordinates are still best, with y = r sin 0. Again p = 1 and p = 1 - r:

•ydA=f frsinOrdrdO= J y(1 - r) dA=fr rsinO(1-r)rdrdO= .
O 0 0 0

The height of the center of gravity is 3 = Mx/M = moment divided by mass:

2/3 4 1/6 1
y=- =- when p =1 y when p = 1 - r.

7r/2 37w 7t/6 wn

it

r= 1 -2 -1 1 2

Fig. 14.8 Semicircles with density piled above them. Fig. 14.9 Bell-shaped curve.

Question Compare y for p = 1 and p = other positive constants and p = 1 - r.
Answer Any constant p gives 3 = 4/37r. Since 1 - r is dense at r = 0, j drops to 1/in.

Question How is Y = 4/37t related to the "average" of y in the semicircle?
Answer They are identical. This is the point of 3. Divide the integral by the area:

The average value of a function is Jf f(x, y)dA / Jf dA. (5)

The integral off is divided by the integral of 1 (the area). In one dimension fa v(x) dx
was divided by fb 1 dx (the length b - a). That gave the average value of v(x) in
Section 5.6. Equation (5) is the same idea forf(x, y).

EXAMPLE 4 Compute A= e-X2dx = i/ from A 2 = -X2dx -e dy = 7r.

A is the area under a "bell-shaped curve"-see Figure 14.9. This is the most important
definite integral in the study of probability. It is difficult because a factor 2x is not
present. Integrating 2xe -

X2 gives -e -
X2, but integrating e-x 2 is impossible--except

approximately by a computer. How can we hope to show that A is exactly /-?
The trick is to go from an area integral A to a volume integral A2. This is unusual

(and hard to like), but the end justifies the means:

A2 = e 2ey 2dy dx = e-`2r dr dO. (6)
-o y= -- 0 =0 r=0

The double integrals cover the whole plane. The r2 comes from x2 + y2, and the
key factor r appears in polar coordinates. It is now possible to substitute u = r2.
The r integral is -if e-udu= -. The 0 integral is 21t. The double integral is (½)(21t).
Therefore A 2 = ir and the single integral is A = t/.

r=l

I
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EXAMPLE 5 Apply Example 4 to the "normal distribution" p(x) = ~ - X ' I ~ / , / % .  

Section 8.4 discussed probability. It emphasized the importance of this particular p(x). 
At that time we could not verify that 1p(x)dx = 1. Now we can: 

e-'2/2dx= -I" e - ~ ' d ~x = f iy  yields I!m J;; = 1 .  (7)Jz;; 
- m  - m  

Question Why include the 2's in p(x)? The integral of e-"'/& also equals 1. 

Answer With the 2's the bbvariance"is 1x2p(x) dx  = 1 .  This is a convenient number. 

CHANGE TO OTHER COORDINATES 

A third method was promised, to find r dr d0 without a picture and without geometry. 
The method works directly from x = r cos 0 and y = r sin 0 .  It also finds the 1 in 
du du, after a rotation of axes. Most important, this new method finds the factor J in 
the area d A  = J du dv, for any change of variables. The change is from xy  to uv. 

For single integrals, the "stretching factor" J between the original dx and the new 
du is (not surprisingly) the ratio dxldu. Where we have dx,  we write (dx/du)du.Where 
we have (du/dx)dx,we write du. That was the idea of substitutions-the main way 
to simplify integrals. 

For double integrals the stretching factor appears in the area: dx dy  becomes 
IJI du do. The old and new variables are related by x = x(u, v )  and y = y(u, 0).  The point 
with coordinates u and v comes from the point with coordinates x and y.  A whole 
region S, full of points in the uu plane, comes from the region R full of corresponding 
points in the xy  plane. A small piece with area IJI du dv comes from a small piece with 
area d x  dy .  The formula for J is a two-dimensional version of dxldu. 

1 148 The stretching factor for area is the 2 by 2 Jacobian dktermiccnf J(u, v): 

I An integral over R in the xy plane becomes an integral over S in the uv plane: 

The determinant J is often written a(x, y)/d(u, v), as a reminder that this stretching 
factor is like dxldu. W e  require J # 0 .  That keeps the stretching and shrinking under 
control. 

You naturally ask: Why take the absolute value IJI in equation (9)? Good 
question-it wasn't done for single integrals. The reason is in the limits of integration. 
The single integral dx is '(- du) after changing x to -u. W e  keep the minus sign 
and allow single integrals to run backward. Double integrals could too, but normally 
they go left to right and down to up. We use the absolute value IJI and run forward. 

EXAMPLE 6 Polar coordinates have x = u cos v = r cos 6 and y = u sin v = r sin 8. 

cos 6 - r sin 8 
With no geometry: = r .  (10)

sin 8 r cos 8 
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EXAMPLE 7 Find J for the linear change to x = au + bv and y = cu + dv. 

dxldu dxldv a b 
Ordinary determinant: J = i y / d v c  d = a d b c *  (1 1) 

Why make this simple change, in which a, b, c, d are all constant? It straightens 
parallelograms into squares (and rotates those squares). Figure 14.10 is typical. 

Common sense indicated J = 1 for pure rotation-no change in area. Now J = 1 
comes from equations (1) and (1I), because ad - bc is cos2a + sin2a. 

' In pralctice, xy rectangles generally go into uv rectangles. The sides can be curved 
(as in po~lar rectangles) but the angles are often 90". The change is "orthogonal." The 
next example has angles that are not 90°, and J still gives the answer. 

Fig. 14.10 Change from xy to uv has J =4. Fig. 14.11 Curved areas are also 
d A  = lJldu dv. 

EXAMPLE 8 Find the area of R in Figure 14.10. Also compute jj exdx dy. 
R 

Solution The figure shows x = 3u + $I and y = i u  + 3v. The determinant is 

The area of the xy parallelogram becomes an integral over the uv square: 

The square has area 9, the parallelogram has area 3. I don't know if J = 3 is a 
stretching factor or a shrinking factor. The other integral jj exdx dy is 

Main point: The change to u and v makes the limits easy (just 0 and 3). 

Why 1s the stretching factor J a determinant? With straight sides, this goes back to 
Section 11.3 on vectors. The area of a parallelogram is a determinant. Here the sides 
are curved, but that only produces ( d ~ ) ~  which we ignore. and ( d ~ ) ~ ,  

A cha.nge du gives one side of Figure 14.11-it is (dxldu i + dyldu j)du. Side 2 is 
(dxldvi -t dyldv j)dv. The curving comes from second derivatives. The area (the cross 
product of the sides) is 1 J ldu dv. 
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Final remark I can't resist looking at the change in the reverse direction. Now the 
rectangle is in xy and the parallelogram is in uu. In all formulas, exchange x for u 

This is exactly like duldx = l/(dx/du).It is the derivative of the inverse function. 
The product of slopes is 1-stretch out, shrink back. From xy to uv we have 2 by 2 
matrices, and the identity matrix I takes the place of 1: 

The first row times the first column is (ax/a~)(au/ax)+ (ax/av)(av/ax)= axlax = 1. 
+ (ax/a~)(av/dy)The first row times the second column is ( d ~ / a ~ ) ( a ~ / d y )  = axlay = 0. 

The matrices are inverses of each other. The determinants of a matrix and its inverse 
obey our rule: old J times new J = 1. Those J's cannot be zero, just as dxldu and 
duldx were not zero. (Inverse functions increase steadily or decrease steadily.) 

In two dimensions, an area dx dy goes to J du dv and comes back to dx dy. 

14.2 EXERCISES 

Read-through questions 

We change variables to improve the a of integration. 
The disk x2 + y2 6 9 becomes the rectangle 0 6 r 6 b , 
0 6 0 < c . he inner limits on j j  dy dx are = + d . 
In polar coordinates this area integral becomes e = 

f 

A polar rectangle has sides dr and g . Two sides are 
not h but the angles are still i . The area between 
the circles r = 1 and r = 3 and the rays 0 =0 and 0 = 4 4  is 

I . The integral S I X  dy dx changes to k . This is 
the I around the m axis. Then .f is the ratio n . 
This is the x coordinate of the 0 , and it is the P 

value of x. 

In a rotation through a, the point that reaches (u, v) starts 
at x = u cos sc - v sin a, y = q .A rectangle in the uv plane 
comes from a r in xy. The areas are s so the stretch- 
ing factor is J = t . This is the determinant of the matrix 

u containing cos a and sin a. The moment of inertia 
j j  x2dx dy changes to j j  v du dv. 

For single integrals dx changes to w du. For double 
integrals dx dy changes to Jdu dv with J = x . The 
stretching factor J is the determinant of the 2 by 2 matrix 

Y . The functions x(u, v) and y(u, v) connect an xy region 
R to a uv region S, and SIR dx dy = j j ,  =area of A . 
For polar coordinates x = B , y = c . For x = u, y = 

u +4v the 2 by 2 determinant is J = D . A square in the 
uu plane comes from a E in xy. In the opposite direction 
the change has u =x and u =i(y -x)  and a new J = F . 
This J is constant because this change of variables is G . 

In 1-12 R is a pie-shaped wedge: 0 6 r 6 1 and n/4 6 0 d 37114. 

1 What is the area of R? Check by integration in polar 
coordinates. 

2 Find limits on j j  dy dx to yield the area of R, and integ- 
rate. Extra credit: Find limits on j j  dx dy. 

3 Equation (1) with a =4 4  rotates R into the uu region S = 
. Find limits on du dv. 

4 Compute the centroid height j of R by changing j j  y dx dy 
to polar coordinates. Divide by the area of R. 

5 The region R has 2 =0 because . After rotation 
through r =4 4 ,  the centroid (2, j )  of R becomes the centroid 

of S. 

6 Find the centroid of any wedge 0 6 r 6 a, 0 6 O < b. 

7 Suppose R* is the wedge R moved up so that the sharp 
point is at x =0, y = 1 .  

(a) Find limits on j j  dy dx to integrate over R*. 
(b) With x* =x and y* =y - 1 ,  the xy region R* corres-
ponds to what region in the x*y* plane? 
(c) After that change dx dy equals dx*dy*. 

8 Find limits on f j  r dr dO to integrate over R* in Problem 7. 

9 The right coordinates for R* are r* and O*, with x = 
r* cos O* and y = r* sin O* + 1. 

(a) Show that J = r* so dA = r*dr*dO*. 
(b)Find limits on SSr*dr*dO* to integrate over R*. 
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10 If the centroid of R is (0, j), the centroid of R* is 
The centroid of the circle with radius 3 and center (1, 2) is 

. The centroid of the upper half of that circle is 

11 The moments of inertia I,, I,, I. of the original wedge R 
are . 
12 The moments of inertia I,, I,, I, of the shifted wedge R* 
are . 

Problems 13-16 change four-sided regions to squares. 

13 R has straight sides y = 2x, x = 1, y = 1 + 2x, x =0. Locate 
its four corners and draw R. Find its area by geometry. 

14 Choose a, b, c, d so that the change x = au + bu, y = 
cu + dv takes the previous R into S, the unit square 0 < u < 1, 
0 < v < 1. From the stretching factor J = ad -bc find the area 
of R. 

15 The region R has straight sides x =0, x = 1, y =0, y = 
2x + 3. Choose a, b, c so that x = u and y = au + bv + cuv 
change R to the unit square S. 

16 A nonlinear term uv was needed in Problem 15. Which 
regions R could change to the square S with a linear x = 
au+ bv, y=cu +dv? 

Draw the xy region R that corresponds in 17-22 to the uv 
square S with corners (0, O), (1, O), (0, I), (1, 1). Locate the 
corners of R and then its sides (like a jigsaw puzzle). 

22 x = u cos v, y =u sin v (only three corners) 

23 In Problems 17 and 19, compute J from equation (8). Then 
find the area of R from j J s l ~ ~ d u  do. 

24 In 18 and 20, find J = d(x, y)/a(u, v) and the area of R. 

25 If R lies between x =0 and x = 1 under the graph of y = 
f(x) >0, then x =u, y = vf(u) takes R to the unit square S. 
Locate the corners of R and the point corresponding to 
u =4, v = 1. Compute J to prove what we know: 

area of R = f(x)dx =JiJ: J du dv. 

26 From r = ,/=and 8= tan- '(ylx), compute &/ax, 
arlay, a0/ax, a0/ay, and the determinant J = a(r, 0)p(x, y). 
How is this J related to the factor r = a(x, y)p(r, 0) that enters 
r dr dB? 

27 Example 4 integrated e-,' from 0 to m (answer &). Also 
B =ji e-"'dx leads to B2 = jie-x2dx lie-y2dy. Change this 
double integral over the unit square to r and 0- and find 
the limits on r that make exact integration impossible. 

28 Integrate by parts to prove that the standard normal 
distribution p(x) = e - " I 2 / p  has 02= 1". x2p(x)dx= I .  

29 Find the average distance from a point on a circle to the 
points inside. Suggestion: Let (0,O) be the point and let 
0 < r < 2a cos 0,0 < 0 < n be the circle (radius a). The distance 
is r, so the average distance is ? =jj 1jj 
30 Draw the region R: 0< x < 1, 0 < y < m and describe it 
with polar coordinates (limits on r and 0). Integrate 
jjR(x2+ y2)-312dx dy in polar coordinates. 

31 Using polar coordinates, find the volume under z = 
x2 + y2 above the unit disk x2 + y2 < 1. 

32 The end of Example 1 stated the moment of inertia 
J j y 2 d ~ .Check that integration. 

33 In the square -1 < x < 2, -2 <y < 1, where could you 
distribute a unit mass (with jj p dxdy = 1) to maximize 

(a) jjx2p dA (b) jjy2p dA (c) jjr2p dA? 

34 True or false, with a reason: 
(a) If the uv region S corresponds to the xy region R, then 
area of S =area of R. 
(b)jlx dA <jjx2dA 
(c) The average value off(x, y) is jj f(x, y)dA 
(d)I?, xe-"dx = 0 
(e) A polar rectangle has the same area as a straight-sided 
region with the same corners. 

35 Find the mass of the tilted square in Example 1 if the 
density is p = xy. 

36 Find the mass of the ring in Example 2 if the density is 
p =x2 + y2. This is the same as which moment of inertia with 
which density? 

37 Find the polar moment of inertia I, of the ring in 
Example 2 if the density is p =x2 + y2. 

38 Give the following statement an appropriate name: 
IlRf(x, y)dA =f(P) times (area of R), where P is a point in R. 
Which point P makes this correct for f =x and f = y? 

39 Find the xy coordinates of the top point in Figure 14.6a 
and check that it goes to (u, u) = (1, 1). 
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