Table of Contents

Essay 1: Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis

T	About dimensional analysis					
	1.1	The goal and the plan	4			
	1.2	About this essay	5			
2 Models of a simple pendulum						
	2.1	A physical model	6			
	2.2	A mathematical model	6			
	2.3	Models generally	8			
3	An i	informal dimensional analysis	9			
	3.1	Invariance to a change of units	9			
	3.2	Natural units	11			
	3.3	Extra and omitted variables	12			
4	A ba	A basis set of nondimensional variables				
	4.1	The mathematical problem	13			
	4.2	The null space	15			
	4.3	A basis set for the simple, inviscid pendulum	16			
5	The	The viscous pendulum				
	5.1	A physical model of the viscous pendulum	19			
	5.1 5.2	A physical model of the viscous pendulum	19 20			
	5.1 5.2	A physical model of the viscous pendulum	19 20 21			
	5.1 5.2	A physical model of the viscous pendulumDrag on a moving sphere5.2.1Zero order solution5.2.2The other nondimensional variables: remarks on the Reynolds number	19 20 21 22			
	5.15.25.3	A physical model of the viscous pendulumDrag on a moving sphere5.2.1Zero order solution5.2.2The other nondimensional variables: remarks on the Reynolds numberA numerical simulation	 19 20 21 22 23 			
	5.15.25.35.4	A physical model of the viscous pendulumDrag on a moving sphere5.2.1Zero order solution5.2.2The other nondimensional variables: remarks on the Reynolds numberA numerical simulationAn approximate model of the decay rate	 19 20 21 22 23 25 			
6	 5.1 5.2 5.3 5.4 A sin 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 			
6	 5.1 5.2 5.3 5.4 A sin 6.1 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 28 			
6	 5.1 5.2 5.3 5.4 A sin 6.1 6.2 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 28 28 			
6	 5.1 5.2 5.3 5.4 A sin 6.1 6.2 Scal 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 28 28 31 			
6 7	 5.1 5.2 5.3 5.4 A sin 6.1 6.2 Scal 7.1 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 28 28 28 28 31 31 			
6 7	 5.1 5.2 5.3 5.4 A sin 6.1 6.2 Scal 7.1 7.2 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 28 28 31 34 			
6 7	 5.1 5.2 5.3 5.4 A sin 6.1 6.2 Scal 7.1 7.2 7.3 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 28 28 28 31 31 34 36 			
6 7	 5.1 5.2 5.3 5.4 A sin 6.1 6.2 Scall 7.1 7.2 7.3 7.4 	A physical model of the viscous pendulum	 19 20 21 22 23 25 27 28 28 31 34 36 37 			

Essay 2: The Coriolis force

1	Large-scale flows of the atmosphere and ocean.					
	1.1	Classic	cal mechanics observed from a rotating Earth	8		
	1.2	The go	bal and the plan of this essay	11		
	1.3	About	this essay	13		
2	Part	t I: Rota	ating reference frames and the Coriolis force.	14		
	2.1	Kinem	atics of a linearly accelerating reference frame	15		
	2.2	Kinem	atics of a rotating reference frame	17		
		2.2.1	Transforming the position, velocity and acceleration vectors	17		
		2.2.2	Stationary \Rightarrow Inertial; Rotating \Rightarrow Earth-Attached	24		
		2.2.3	Remarks on the transformed equation of motion	26		
3	Iner	nertial and noninertial descriptions of elementary motions.				
	3.1	Switch	ning sides	28		
	3.2	To get	a feel for the Coriolis force	30		
		3.2.1	Zero relative velocity	31		
		3.2.2	With relative velocity	32		
	3.3	An ele	mentary projectile problem	34		
		3.3.1	From the inertial frame	34		
		3.3.2	From the rotating frame	34		
	3.4	Appen	dix to Section 3: Circular motion and polar coordinates	37		
4	A re	A reference frame attached to the rotating Earth.				
	4.1	Cance	lation of the centrifugal force	39		
		4.1.1	Earth's (slightly chubby) figure	39		
		4.1.2	Vertical and level in an accelerating reference frame	41		
		4.1.3	The equation of motion for an Earth-attached frame	41		
	4.2	Coriol	is force on motions in a thin, spherical shell	42		
	4.3	4.3 Why do we insist on the rotating frame equations?				
		4.3.1	Inertial oscillations from an inertial frame	45		
		4.3.2	Inertial oscillations from the rotating frame	47		
5	A de	A dense parcel on a slope.				
	5.1	Inertia	l and geostrophic motion	54		

1	LARGE-SCALE FLOWS OF THE ATMOSPHERE AND OCEAN.			
	5.2	Energy budget	56	
6	Part II: Geostrophic adjustment and potential vorticity.			
	6.1	The shallow water model	58	
	6.2	Solving and diagnosing the shallow water system	60	
		6.2.1 Energy balance	61	
		6.2.2 Potential vorticity balance	61	
	6.3	Linearized shallow water equations	65	
7	Models of the Coriolis parameter.			
	7.1	Case 1, $f = 0$, non rotating	66	
7.2 Case 2, $f = constant$		Case 2, $f = constant$, an f-plane, $\ldots \ldots \ldots$	70	
	7.3	7.3 Case 3, $\mathbf{f} = \mathbf{f_o} + \beta \mathbf{y}$, a β -plane, \ldots \ldots \ldots \ldots \ldots		
		7.3.1 Beta-plane phenomena	78	
		7.3.2 Rossby waves; low frequency waves on a beta plane	82	
		7.3.3 Modes of potential vorticity conservation	86	
		7.3.4 Some of the varieties of Rossby waves	87	
8	8 Summary of the essay.			
9	Supplementary material.			
	9.1	Matlab and Fortran source code	92	
	9.2	Additional animations	93	

Essay 3: Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion

1	The challenge of fluid mechanics is mainly the kinematics of fluid flow.				
	1.1	Physic	al properties of materials; what distinguishes fluids from solids?	5	
		1.1.1	The response to pressure — in linear deformation liquids are not very different from		
			solids	6	
		1.1.2	The response to shear stress — solids deform and fluids flow	9	
	1.2	A first	look at the kinematics of fluid flow	13	
	1.3	Two w	ays to observe fluid flow and the Fundamental Principle of Kinematics	14	
	1.4	The go	al and the plan of this essay; Lagrangian to Eulerian and back again	17	
2	The	Lagran	gian (or material) coordinate system.	19	
	2.1	The jog	y of Lagrangian measurement	21	
	2.2	Transfe	orming a Lagrangian velocity into an Eulerian velocity	23	
	2.3	The La	grangian equations of motion in one dimension	24	
		2.3.1	Mass conservation; mass is neither lost or created by fluid flow	24	
		2.3.2	Momentum conservation; $F = Ma$ in a one dimensional fluid flow $\ldots \ldots \ldots \ldots$	28	
		2.3.3	The one-dimensional Lagrangian equations reduce to an exact wave equation	30	
	2.4	The ag	ony of the three-dimensional Lagrangian equations	31	
3	The Eulerian (or field) coordinate system. 33				
	3.1	Transfe	orming an Eulerian velocity field to Lagrangian trajectories	34	
	3.2	2 Transforming time derivatives from Lagrangian to Eulerian systems; the material derivative			
	3.3	Transfe	orming integrals and their time derivatives; the Reynolds Transport Theorem	38	
	3.4	The Eu	Ilerian equations of motion	41	
		3.4.1	Mass conservation represented in field coordinates	41	
		3.4.2	The flux form of the Eulerian equations; the effect of fluid flow on properties at a fixed		
			position	44	
		3.4.3	Momentum conservation represented in field coordinates	46	
		3.4.4	Fluid mechanics requires a stress tensor (which is not as difficult as it first seems)	47	
		3.4.5	Energy conservation; the First Law of Thermodynamics applied to a fluid	53	
	3.5	A few	remarks on the Eulerian equations	54	
4	Depictions of fluid flows represented in field coordinates.				
	4.1	Traject	cories (or pathlines) are important Lagrangian properties	55	
	4.2	Streak	lines are a snapshot of parcels having a common origin	58	
	4.3	Stream	lines are parallel to an instantaneous flow field	58	
5	Eule	ulerian to Lagrangian transformation by approximate methods.			

	5.1	Tracking parcels around a steady vortex given limited Eulerian data	60
		5.1.1 The zeroth order approximation, or PVD	60
		5.1.2 A first order approximation, and the velocity gradient tensor	61
	5.2	Tracking parcels in gravity waves	63
		5.2.1 The zeroth order approximation, closed loops	64
		5.2.2 The first order approximation yields the wave momentum and Stokes drift	64
6	Asp	ects of advection, the Eulerian representation of fluid flow.	67
	6.1	The modes of a two-dimensional thermal advection equation	68
	6.2	The method of characteristics implements parcel tracking as a solution method	70
	6.3	A systematic look at deformation due to advection; the Cauchy-Stokes Theorem	74
		6.3.1 The rotation rate tensor	77
		6.3.2 The deformation rate tensor	79
		6.3.3 The Cauchy-Stokes Theorem collects it all together	81
7	Lag	rangian observation and diagnosis of an oceanic flow.	82
8	Concluding remarks; where next?		
9	Appendix: A Review of Composite Functions		87
	9.1	Definition	88
	9.2	Rules for differentiation and change of variables in integrals	89

MIT OpenCourseWare <u>http://ocw.mit.edu</u>

Resource: Online Publication.Fluid Dynamics James Price

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.