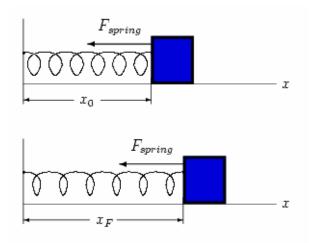
Hooke's Law and Circular Motion

8.01T Sept 29, 2004

Stretching a Spring



Suppose we have a spring whose relaxed length is x_0 , and stretch it to a length x_F .

According to Hooke's law, the restoring force will be proportional to the amount of stretch,

$$F_{spring} = -k(x_F - x_0) = -k\Delta x$$

where *k* is the spring *force constant*.

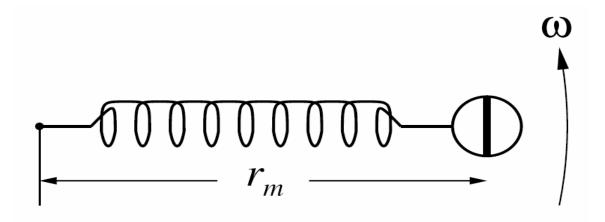
This is an example of *elastic* behavior; it is an experimental "law" that is valid only for a limited range of Δx .

We shall meet Hooke's law again and again in many different contexts. Hooke was a contemporary of Newton.

Experiment 04: Uniform Circular Motion

Goal

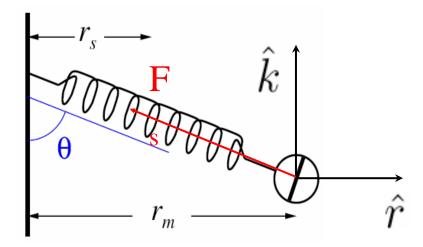
Study a conical pendulum and measure the force required to produce a centripetal acceleration



 \square Extract from measurement of angular frequency and r_m the spring constant k and pre-tension F_0

 \Box Understand how an instability in this system occurs at a critical frequency ω_0 and how to extract ω_0 from your measurements

Analysis of conical pendulum



$$\sum_{i} F_{i} = ma_{i}$$

$$\hat{r} - F_{s} \cdot \sin \theta = -mr_{m}\omega^{2}$$

$$\hat{k} - mg + F_{s} \cos \theta = 0$$

 $\tan \theta =$

 $r_m\omega^2$

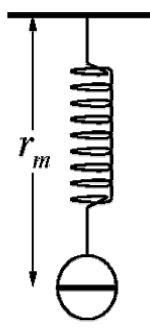
From my measurements of r_m , ω : $\theta \approx 88^\circ$

Therefore: Ignore effect of gravitation!

$$F_s = \Delta r \cdot k = (r_m - r_0)k = mr_m\omega^2$$
$$r_m = \frac{r_0}{1 - \frac{m\omega^2}{k}} = \frac{r_0}{1 - \frac{\omega^2}{\omega_c^2}}$$

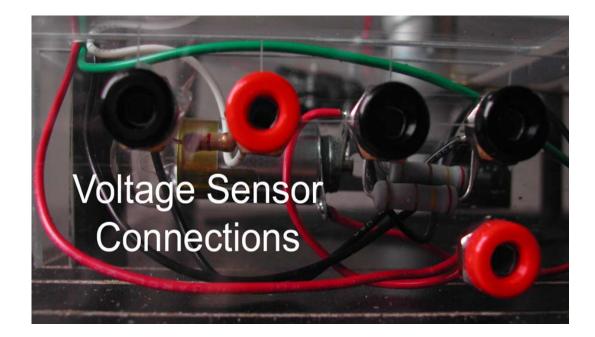
Attaching the mass

Turn the box on its side and measure the radius of the mass when $\omega = 0$:



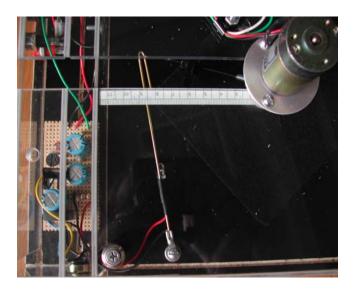
Connecting the motor

For safety, place the side panel after measuring $r_0!$



Connect the voltage sensor to the left side banana jacks!

Measurement of r_m



Wait for the rotation speed to stabilize.

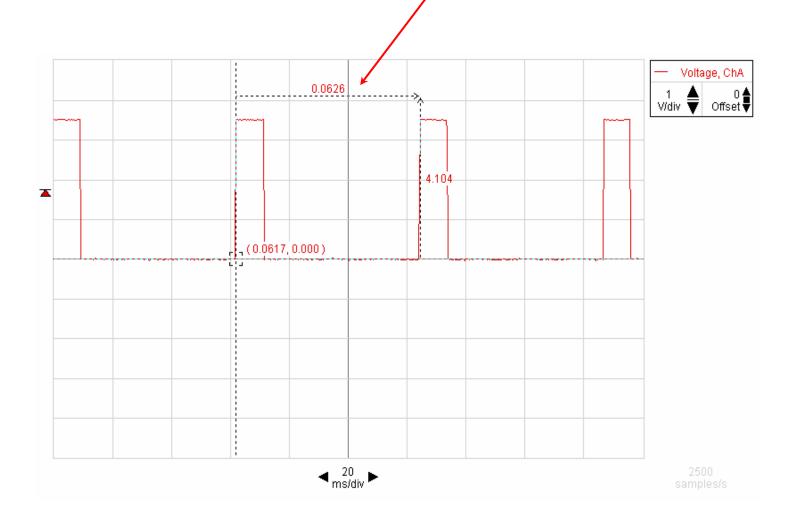
Use the "viewer" to measure \boldsymbol{r}_{m} and the scope display to measure the period T.

(This may work better with the room lights off!)

Enter r_m and $\omega = 2\pi/T$ in a DataStudio table, with ω as the independent (left) variable.

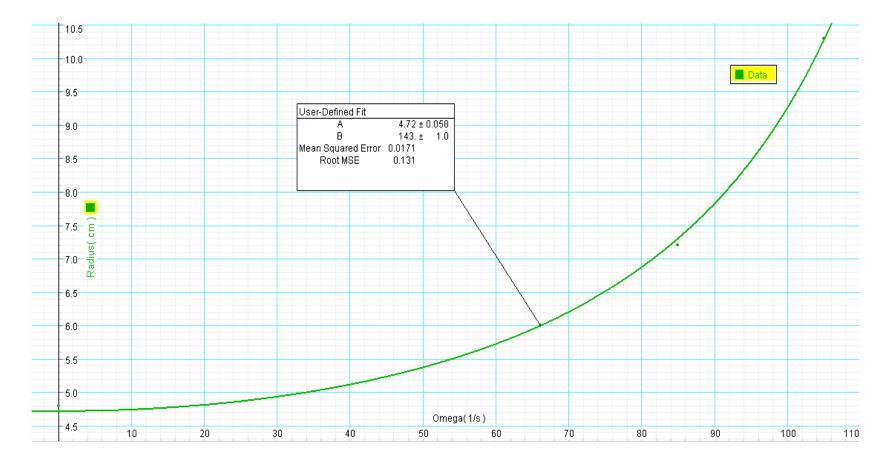
Measurement of $\boldsymbol{\omega}$

Example of scope trace to determine T: Here: T=0.0626s



Fitting

Perform a User-Defined fit to: A/(1-x*x/(B*B))



Fitting results

Defining $r_0 = r_m(\omega=0)$, compare model and fit:

$$r_m(\omega) = \frac{r_0}{1 - (\omega/\omega_c)^2}$$
 $r_m(x) = \frac{A}{1 - (x/B)^2}$

Determine ω_c and k using m=8.5g! ω_c

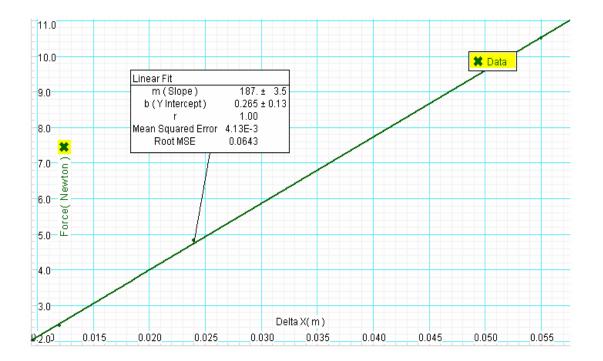
$$\omega_c = \sqrt{k/m}$$

How does A compare with your measured r_0 ?.

Determine k and pre-tension of spring

Enter $\Delta r = r_m - r_0$ and $F_s = r_m \omega^2$ in a DataStudio table, with Δr as the independent (left) variable.

Do a Linear Fit to find $F_s = F_0 + k\Delta r$



Determine k and pre-tension of spring

If you don't have access to a fitting program, you will make a very small mistake (because F_0 is small) if you assume $F_0 = 0$. Then finding k becomes trivial. If you do take this approach, explain to the grader that you lacked a means to fit the data outside of class and thus made this assumption. We will encourage the problem set graders not to penalize you for this.

Test Review

- One Dimensional Motion
- Two Dimensional Motion
- Force Law Problems
- Relative Inertial Reference Frames