
 
Combinatorics: The Fine Art of Counting 

Week One Lecture Notes 
 
A regular polyhedron is a three dimensional solid figure whose faces are all congruent 
regular polygons.  The regular polyhedra are also known as Platonic solids.  Each vertex of a 
regular polyhedron has the same number of edges (and faces) incident to it (touching it), and 
this number is called the vertex degree or just the degree of the regular polyhedron.  Each 
face has the same number of edges (and vertices) incident to it, and this number is called the 
face degree of the regular polyhedron.  There are exactly five regular polyhedra and they are 
listed in the table below: 
 

Name Faces 
F 

Vertices 
V 

Edges 
E 

vertex degree 
d 

face degree 
c 

tetrahedron 4 4 6 3 3 
cube 6 8 12 3 4 

octahedron 8 6 12 4 3 
dodecahedron 12 20 30 3 5 
icosahedron 20 12 30 5 3 

 
By counting incidence relationships we find that for any regular polyhedron dV = 2E = cF 
 
Any polyhedron can be embedded in a sphere preserving all vertices, edges, and faces and 
without crossing any edges.  Any graph which can be embedded in the sphere can also be 
embedded in the plane (with no edges crossing) by picking a point on the sphere which is not 
on any edge and either puncturing the sphere at this point and then stretching it flat, or by 
projecting from the point onto a plane below the sphere.  This transformation is reversible, so 
any graph embedded in the plane can also be embedded on a sphere.  Such a graph is said 
to be planar. 
 
For any graph, the degree of a vertex is the number of edges incident to it.  By counting 
incidence relationships we can see that the sum of the degrees of the vertices of a graph 
must be equal to twice the number of edges.  i.e. Σdi = 2E where di is the degree of the ith 
vertex.  This can also be proven inductively. 
 
For the rest of this lecture we will only be considering graphs which are finite, connected, and 
in which every vertex has degree at least two, i.e. there are no edges “poking out”, ever edge 
and every vertex is part of a polygon (also called a cycle). 
 
Any planar graph when embedded in the plane partitions the plane into regions which we can 
identify as the faces of the graph.  Note that one of these regions is unbounded and is 
referred to as the outer face.  By mapping to the sphere and back, we can choose to make 
any face the outer face. 
 
The dual of a planar graph is defined by placing a vertex inside of each face and then 
connecting vertices in adjacent faces by edges.  This process interchanges vertices and 
faces and leaves the number of edges unchanged.  The dual of a planar graph is also planar. 
 
Among the regular polyhedra, the cube and octahedron are duals of each other, as are the 
dodecahedron and icosahedron, while the tetrahedron is self-dual. 
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For finite planar graphs where every vertex has degree at least 2 the sum of the degrees of 
the faces is equal to twice the number of edges, i.e. Σci = 2E where ci is the degree of the ith 
face.  This can proven by considering the dual graph and summing the vertex degrees, or 
directly by counting incidence relationships. 
 
Euler’s formula for connected planar graphs:  V + F – E = 2 
 
Proof: The proof is by induction on the number of edges in the graph.  A graph with one edge 
contains two vertices and one face which satisfies the formula.  Given a connected planar 
graph with E edges which satisfies the formula we can add an edge to produce a connected 
planar graph with E+1 edges in one of two ways, either we connect two existing vertices in 
which case we don’t change the number of edges but we create one new face (we split an 
existing face in two), or we add one new vertex and don’t create a new face.  In either case 
the quantity V+F increases to V+F+1 and the formula is satisfied. 
 
Note that any connected planar graph can be constructed by successively adding edges to a 
connected planar graph starting with a single edge.  To see this imagine working backward 
and deleting one edge at a time, always choosing an edge with a vertex of degree one if such 
a vertex exists.  This completes the proof. 
 
Corollary 1: For any connected planar graph, E ≤ 3V – 6 
 
Proof: This follows from the fact that every face has degree at least 3 so 2E = Σci ≥ 3F which 
implies that F ≤ 2/3 E.  Plugging this into Euler’s formula yields the desired result. 
 
Corollary 2: For any triangle-free connected planar graph, E ≤ 2V – 4 
 
Proof: If every face has degree at least 4, then using the same argument as in corollary 1 we 
get F ≤ 1/2 E and then plug this into Euler’s formula to get Corollary 2. 
 
Theorem: There are only five regular polyhedra. 
 
Proof: First note that for any regular polyhedra the vertex degree d and face degree c must 
both be at least 3.  By Corollary 1 d ≤ 5 since dV/2 = E ≤ 3V – 6 is not true for d ≥ 6.  By 
duality c ≤ 5 also since otherwise the dual would have d > 5.  If c is not 3 than Corollary 2 
applies and d must be 3 since dV/2 = E ≤ 2V – 4 is not true for d ≥ 4.  Therefore c and d must 
both be integers between 3 and 5 and one of them must be 3.  This leaves exactly five 
possibilities all of which occur in the table above. 
 
The complete graph on n vertices, denoted by Kn is a graph which contains every possible 
edge between n vertices, i.e. an edge for each pair of vertices. 
 
A bipartite graph is a graph in which the vertices can be divided into two sets such that 
every edge connects vertices in different sets.  The complete bipartite graph on m+n vertices, 
denoted by Km,n, is a graph which contains every possible edge between a set of m vertices 
and a set of n vertices. 
 
Theorem: K3,3 is not a planar graph. 
 
Proof: K3,3 has 3 + 3 = 6 vertices and 3 * 3 = 9 edges and does not contain a triangle (or any 
cycle of odd length) since it is bipartite – if we begin at a vertex in one set and then follow 
edges along a cycle, we can only return to the starting vertex after an even number of edges 
since each edge takes us to the opposite set.  By Corollay 2 K3,3 cannot be planar since 9 is 
greater than 2 * 6 – 4 = 8. 
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The n-dimensional hypercube, denoted by Hn is defined inductively as follows:  H1 is a single 
edge with two vertices.  Hn+1 is obtained by taking two copies of Hn and connecting 
corresponding vertices with edges.  Thus H2 is a square, and H3 is a standard cube. 
 
A semi-regular polyhedron is a polyhedron with faces that are all regular polygons and 
which is vertex uniform, i.e. every vertex has the same degree and the same configuration 
of incident faces, but the faces need not all have the same degree. 
 
One way to obtain a semi-regular polyhedron is by truncating a regular polyhedron, i.e. slicing 
off the vertices of a regular polyhedron to create a new face where there used to be a vertex.  
There are two different ways to do this, both of which are explored in the homework 
problems. 
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