Review the rules for complex numbers:

Definition:
$$i = \sqrt{-1}$$
 (1)

$$i^2 = -1 (2)$$

Addition:
$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
 (3)

Multiplication:
$$(a+bi)(c+di) = (ac-bd) + (bc+ad)i$$
 (4)

Division:
$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \frac{c-di}{c-di}$$
 (5)

$$= \frac{(ac+bd) + (bc-ad)i}{c^2 + d^2}$$
 (6)
$$z|^2 = a^2 + b^2$$
 (7)

Magnitude
$$(z = a + bi)$$
: $|z|^2 = a^2 + b^2$ (7)

Phase:
$$\angle z = \tan^{-1} \frac{b}{a}$$
 (8)

Manipulating numbers numerically

Take these two numbers (they are called a conjugate pair):

$$z_1 = 1 + i\sqrt{3}$$

$$z_2 = 1 - i\sqrt{3}$$

• Firstly, what are the magnitudes and phase angles?

$$|z_1| = |z_2| =$$

$$\angle z_1 =$$
 $\angle z_2 =$

• How about their sum?

$$z_1 + z_2 =$$

• And the product? Use either the individual components, or the magnitude and phase: $|z_1 z_2| = |z_1||z_2|, \ \angle(z_1 z_2) = \angle z_1 + \angle z_2$

$$z_1 z_2 =$$

Algebraic expressions

• If A is a constant, find:

$$1 - \frac{1}{1 + iA} =$$

• If ω, R, L and C are constants, and:

$$z_1 = R + i\omega L$$

$$z_2 = \frac{1}{i\omega C}$$

Find the following:

$$\frac{z_1 z_2}{z_1 + z_2} =$$

MIT OpenCourseWare http://ocw.mit.edu

Audio and Speaker Electronics Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.