5.111 Lecture Summary #6

Readings for today: Section 1.9 (1.8 in 3rd ed) – Atomic Orbitals. **Read for Lecture** #7: Section 1.10 (1.9 in 3rd ed) – Electron Spin, Section 1.11 (1.10 in 3rd ed) – The Electronic Structure of Hydrogen.

Topics: Hydrogen Atom Wavefunctions

I. Wavefunctions (orbitals) for the hydrogen atom ($H\Psi = E\Psi$)

II. Shapes of H-atom wavefunctions: s orbitals

III. Radial probability distributions

ENERGY LEVELS (continued from Lecture #5)

The Rydberg formula can be used to calculate the frequency (and also the E or λ , using E = hv or λ = c/v) of light emitted or absorbed by any 1-electron atom or ion.

$$v = \frac{Z^2 R_H}{h} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$
 $v = \frac{Z^2 R_H}{h} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$

for $n_i > n_f$ for $n_f > n_i$

 $n_f > n_i \; \mbox{ in } \underline{\hspace{1cm}}$. Electrons absorb energy causing them to go from a lower to a higher E level.

 $n_i > n_f$ in ______. Electrons emit energy causing them to go from a higher to a lower E level.

I. WAVEFUNCTIONS (ORBITALS) FOR THE HYDROGEN ATOM

When solving $H \Psi = E\Psi$, the solutions are E_n and $\Psi(r,\theta,\phi)$.

 $\Psi(r,\theta,\phi)$ = stationary state wavefunction: time-independent In solutions for $\Psi(r,\theta,\phi)$, two new quantum numbers appear! A total of 3 quantum numbers are needed to describe a wavefunction in 3D.

1. n = principal quantum number

 $n = 1, 2, 3 \dots \infty$ determines binding energy

2. l = angular momentum quantum number

 $l = \frac{l}{l}$ is related to n largest value of l = n - 1 determines angular momentum

3. m = magnetic quantum number

$$m = \underline{\hspace{1cm}}$$
 m is related to l
largest value is $+l$, smallest is $-l$
determines behavior of atom in magnetic field

To completely describe an orbital, we need to use all three quantum numbers:

$$\Psi_{nlm}(r,\theta,\phi)$$

The wavefunction describing the ground state is _____ . Using the terminology of chemists, the Ψ_{100} orbital is instead called the "___" orbital.

An orbital is (the spatial part) of a wavefunction; **n(shell)** *l(subshell)* **m(orbital)**

$$\ell = 0 \Rightarrow$$
 ____ orbital $\ell = 1 \Rightarrow$ ____ orbital $\ell = 2 \Rightarrow$ ____ orbital $\ell = 3 \Rightarrow$ ____ orbital for $\ell = 1$: m = 0 _____ orbital, m = ±1 states combine to give ____ and ____ orbitals

	State label	wavefunction	orbital	$\mathbf{E}_{\mathbf{n}}$	$E_n[J]$
n = 1					
$\mathbf{\ell} = 0$		ψ_{100}		$-R_{\rm H}/1^2$	-2.18×10^{-18} J
m = 0					
n = 2					
$\ell = 0$					-5.45×10^{-19} J
m = 0					
n = 2					
$\ell = 1$					-5.45×10^{-19} J
m = +1					
n = 2					
$\ell = 1$	210	ψ_{210}		$-R_{\rm H}/2^2$	-5.45×10^{-19} J
m = 0					
n = 2					
$\ell = 1$	21-1	$\psi_{21\text{-}1}$		$-R_H/2^2$	-5.45×10^{-19} J
m = -1					

For a _____, orbitals with the same n value have the same energy: $E = -R_H/n^2$.

- **Degenerate** = having the same energy
- For any principle quantum number, n, there are ______ degenerate orbitals in hydrogen (or any other 1 electron atom).

Energy Level Diagram

9 degenerate states at second excited energy level

E [J]					excited energy level				
-0.242×10^{-18}	$ \begin{array}{c} $	$\frac{3}{\ell = 1}$ $m=\pm 1$	$\frac{3}{\mathbf{\ell} = 1}$ m=0	$\frac{3}{\ell = 1}$ $m = \pm 1$	$\frac{3}{\ell = 2}$ $\pm 1, \pm 2$	$\frac{3}{\ell = 2}$ $\pm 1, \pm 2$	$\frac{3}{\ell = 2}$ $m = 0$	$ \begin{array}{c} 3 \\ \ell = 2 \\ \pm 1, \pm 2 \end{array} $	$ \begin{array}{c} 3\\ \ell = 2\\ \pm 1, \pm 2 \end{array} $
-0.545×10^{-18}	$ \frac{1}{n=2} $ $ \boldsymbol{\ell} = 0 $ $ m = 0 $	$\frac{2}{\ell = 1}$ $m = \pm 1$	$\frac{2}{\ell = 1}$ m=0	$\frac{2}{\ell = 1}$ m=±1	4 degenerate states at first excited energy level				
-2.18×10^{-18}	$ \begin{array}{c} $			e at ground e describe					

II. SHAPES OF H-ATOM WAVEFUNCTIONS: S ORBITALS

THE PHYSICAL INTERPRETATION OF A WAVEFUNCTION

Max Born (German physicist, 1882-1970). The probability of finding a particle (the electron!) in a defined region is proportional to the square of the wavefunction.

$$[\Psi_{nlm}(r,\theta,\phi)]^2$$
 = PROBABLITY DENSITY probability of finding an electron per unit volume at r, θ , ϕ

To consider the shapes of orbitals, let's first rewrite the wavefunction as the product of a radial wavefunction, $R_{nl}(r)$, and an angular wavefunction $Y_{lm}(\theta,\phi)$

$$\Psi_{nlm}(\mathbf{r}, \boldsymbol{\theta}, \boldsymbol{\phi})] = \underline{\qquad} \quad \mathbf{x} \quad \underline{\qquad}$$

for a ground state H-atom:

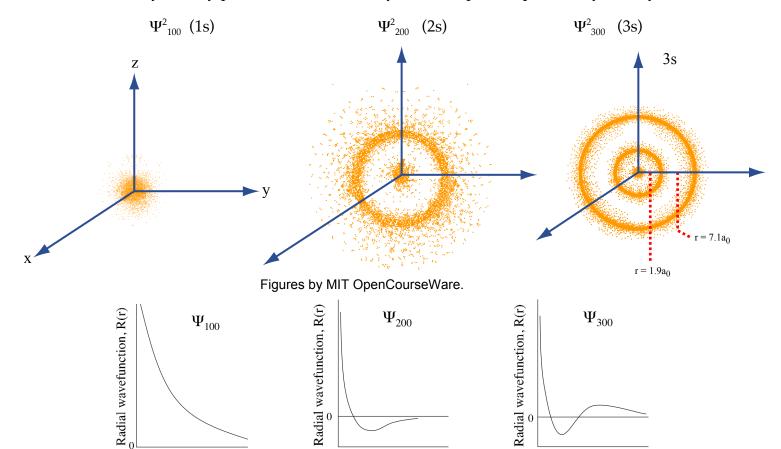
$$\Psi_{100}(r,\theta,\phi) = \underbrace{\frac{2e^{-r/a_{o}}}{a_{o}^{3/2}}}_{} x \underbrace{\left(\frac{1}{4\pi}\right)^{1/2}}_{} = \underbrace{\frac{e^{-r/a_{o}}}{(\pi a_{o}^{3})^{1/2}}}_{}$$

$$R(r) Y(\theta,\phi)$$

where $a_0 =$ ______ (a constant) = 52.9 pm

- For all s orbitals (1s, 2s, 3s, etc.), the angular wavefunction, Y, is a ______.
- s-orbitals are **spherically symmetrical** independent of _____ and ____.

Probability density plot of s orbitals: density of dots represent probability density



NODE: A value for r, θ , or ϕ for which Ψ (and Ψ^2) = _____. In general, an orbital has n -1 nodes.

radius, r

RADIAL NODE: A value for _____ for which Ψ (and Ψ^2) = 0. In other words, a radial node is a distance from the radius for which there is no probability of finding an electron.

In general, an orbital has n - 1 - l radial nodes.

1s: 1-1-0=0 radial nodes

radius, r

2s: ____ – ___ = ___ radial nodes

3s: ____ - ___ = ___ radial nodes

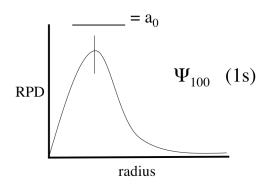
III. RADIAL PROBABILITY DISTRIBUTION

Probability of finding an electron in a spherical shell of thickness dr at a distance r from origin.

Radial Probability Distribution (for s orbitals ONLY) = $4\pi r^2 \Psi^2 dr$

radius, r

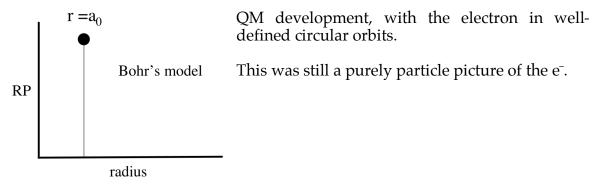
We can plot the radial probability distribution as a function of radius. Radial probability distribution for a hydrogen 1s orbital:



Maximum probability or most probable value of r is denoted r_{mp} .

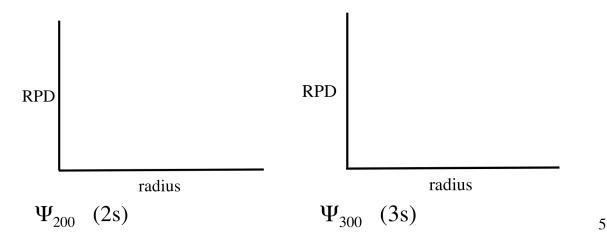
$$r_{mp}$$
 for a 1s H atom = $a_0 = 0.529 \times 10^{-10} \,\text{m} = 0.529 \,\text{Å}$ $a_0 = BOHR$ radius

1913 Niels Bohr (Danish scientist) predicted quantized levels for H atom prior to



But, an electron does not have well-defined orbits! The best we can do is to find the probability of finding e^- at some position r.

Knowing only probability is one of main consequences of Quantum Mechanics. Unlike CM, QM is non-deterministic. The uncertainty principle forbids us from knowing r exactly.



MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.