Third Hour Exam 5.111

Write your name below. This is a closed book exam. Solve all 6 problems. Read all problems thoroughly and read all parts of a problem. Many of the latter parts of a problem can be solved without having solved earlier parts. Show all work to receive full credit. Physical constants, formulas, standard reduction potentials, and a periodic table are given on the last two pages of the exam. You may detach the last 2 pages after the exam has started.

1. THERMODYNAMICS (12 points)	
2. CHEMICAL EQUILIBRIUM (12 points)	
3. ACID-BASE EQUILIBRIUM (12 points)	
4. ACID-BASE TITRATION (22 points)	
5. OXIDATION/REDUCTION (30 points)	
6. OXIDATION/REDUCTION (12 points)	-
Total (100 points)	-
Name	

1. THERMODYNAMICS (12 points total)

Consider the formation of MgO (s).

Mg (s) + 1/2 O₂ (g)
$$\rightarrow$$
 MgO (s) $\Delta H_r^{\circ} = -602 \text{ kJ/mol}$
 $\Delta S_r^{\circ} = -108 \text{ JK}^{-1} \text{mol}^{-1}$.

(Assume that ΔH_r° and ΔS_r° are independent of temperature.)

(a) (6 points) Calculate ΔG_r° for the formation of MgO (s) at 0 °C (273 K). Is the reaction spontaneous or non-spontaneous at 0 °C?

(b) (6 points) Is there a temperature at which the formation of MgO switches from spontaneous to non-spontaneous or vice versa? If no, explain briefly why not. If yes, calculate the temperature (T^*) at which the spontaneity of the reaction switches.

2. CHEMICAL EQUILIBRIUM (12 points total)

Explain the effect of each of t	he following stresses	on the position of t	the following equilibrium:

 $3 \text{ NO(g)} \longrightarrow N_2 \text{O(g)} + \text{ NO}_2 \text{ (g)}$

The reaction as written is exothermic.

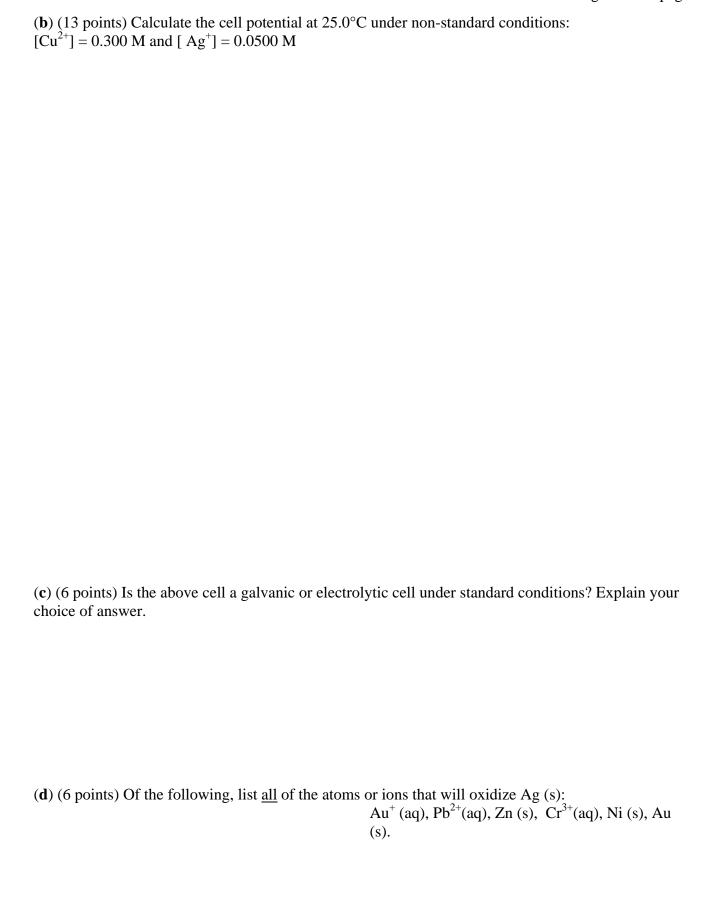
(a) (4 points) The equilibrium mixture is cooled. Explain your answer.

(b) (4 points) The volume of the equilibrium mixture is reduced at constant temperature. <u>Explain your answer.</u>

(c) (4 points) Gaseous argon (which does not react) is added to the equilibrium mixture while both the total gas pressure and the temperature are kept constant. Explain your answer.

3. ACID-BASE EQUILIBRIUM (12 points total)
(a) (6 points) Calculate the pH in a solution prepared by dissolving 0.050 mol of acetic acid
(CH ₃ COOH) and 0.20 mol of sodium acetate (NaCH ₃ COO) in water and adjusting the volume to 500
mL. The pKa for acetic acid (CH ₃ COOH) is 4.75.

(b) (6 points) Suppose 0.010 mol of NaOH is added to the buffer from part (a). Calculate the pH of the solution that results.


4. ACID-BASE TITRATION (22 points total)

A 10.0 mL sample of 0.20 M HNO $_2$ (aq) solution is titrated with 0.10 M NaOH (aq). (K_a of HNO $_2$ is 4.3 x 10 $^{-4}$).

(a) (5 points) Calculate the volume of NaOH needed to reach the equivalence point.

(b) (12 points) Calculate the pH at the equivalence point. Check assumptions for full credit.

(c) (5 points) Calculate the pH with 2.00 mL of NaOH added past the equivalence point.
5. OXIDATION/REDUCTION REACTIONS (30 points total) For a cell constructed with a Cu (s) \mid Cu ²⁺ (aq) anode and Ag ⁺ (aq) \mid Ag (s) cathode at 25.00 °C.
(a) (5 points) Write the overall balanced equation under acidic conditions.

6. OXIDATION-REDUCTION (12 points total)

The following reaction has an ΔE° (cell) of 2.27 V and a K = 10^{383} at 25°C:

$$2 \text{ MnO}_4$$
 (aq) + 5 Zn (s) + 16 H₃O⁺ (aq) $\rightarrow 2 \text{Mn}^{2+}$ (aq) + 5 Zn²⁺ (aq) +24 H₂O (l)

(a) (4 points) What is the oxidation number for Mn in MnO₄?

(b) (4 points) How many electrons are transferred in this reaction (in other words, what is "n")?

(c) (4 points) Would you expect a large quantity of MnO₄ ions at equilibrium at 25°C? Why or why not?

Equations and constants for Exam 3

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$pK_a = -log [K_a]$$

$$R = 8.315 \text{ J K}^{-1} \text{mol}^{-1}$$

$$pOH = -log [OH^-]$$

 \Im (Faraday's constant) = 96,485 C mol⁻¹

$$pH = -log [H_3O^+]$$

$$1V = 1 J/C$$

$$1A = 1C/s$$

$$pH \cong pK_a - log\left(\frac{[HA]}{[A]}\right)$$

$$K_w = 1.00 \text{ x } 10^{-14}$$
 at 25°C

$$\Delta E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode})$$

$$14.00 = pH + pOH$$
 at $25^{\circ C}$

$$RT/\Im = 0.025693 \text{ V at } 25.00 \text{ }^{\circ}\text{C}$$

$$\Delta G^{\circ} = -RT \ln K$$

$$\Im/RT = 38.921 \text{ V}^{-1} \text{ at } 25.00 \text{ }^{\circ}\text{C}$$

$$\Delta E_{\text{cell}} = E^{\circ}_{\text{cell}} - (RT/\Im \text{ n}) \ln Q$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\ln K = (n\Im/RT) \Delta E^{\circ}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$E_3^{\circ} = [n_1 E_1^{\circ} (reduction) - n_2 E_2^{\circ} (oxidation)]/n_3$$

$$\ln\left(\frac{K_2}{K_1}\right) = -\left(\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\Delta G^{\circ}_{\text{cell}} = -(n)(\mathfrak{I}) \Delta E^{\circ}_{\text{cell}}$$

$$K_{\rm w}=K_{\rm a}K_{\rm b}$$

$$Q = It$$

Standard Reduction Potentials at 25°C

Half-Reactions	$E^{\circ}(\text{volts})$
$Au^+(aq)+e^- \Rightarrow Au(s)$	1.69
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1)$	1.51
$Ag^+(aq) + 1e^- \rightarrow Ag(s)$	0.80
$Cu^{2+}(aq) + 2e^{-} \Rightarrow Cu(s)$	0.34
$AgCl(s) + 1e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$	0.22
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	0.15
$2H^+(aq) + 2e^- \Rightarrow H_2$	0
$Pb^{2+}(aq) + 2e^{-} \Rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2 e^{-} \Rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \Rightarrow Ni(s)$	-0.23
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \Rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \Rightarrow Zn(s)$	-0.76

18 ^a VIIIA b	Noble Gases 2 He 4 003	10 Ne 20.179	18 Ar	39.948	36 Kr	83.80	Xe 131.29	86 Rn (222)				
17 VIIA		9 F 18.998	71 5	53		53	4	85 At (210)	-		71 Lu 174.967	103 Lr (260)
16 VIA	als	8 O 15.999	91 0	32.06	34 Se	78.96	Te 127.60	%4 Po (209)		ı	70 Yb 173.04	102 No (259)
15 VA	The Nonmetals	7 N 14.007	51 9	30.974	33 As	74.922	Sb 121.75	83 Bi 208.98		ı	69 Tm 168.934	101 Md (258)
14 IVA	The	6 C 12.011	4 9	28.086	32 Ge	50	Sn 118.69	82 Pb 207.2		ı	68 Er 167.26	100 Fm (257)
13 IIIA		5 B 10.81	13	286.982	31 Ga	69.72	ln 114.82	81 T1 204.38			67 Ho 164.930	99 Es (252)
12 IIB				I	30 Zn	65.38	Cd 112.41	80 Hg 200.59		tals	66 Dy 162.50	% Cf (251)
= B					29 Cu	63.546	28	79 Au 196.966		Inner Transition Metals	65 Tb 158.925	97 Bk (247)
10				ı	28 Z:	58.69	Pd 106.42	78 Pt 195.08	-	er Transi	64 Gd 157.25	96 Cm (247)
9 VIIIB				S	27 Co	58.933	90	77 Ir 192.22		Inno	63 Eu 151.96	95 Am (243)
∞				Element	26 Fe	55.847	2	76 Os 190.2		ı	62 Sm 150.36	94 Pu (244)
7 VIIB				Transition Elements	25 Mn	54.938	Tc (98)	75 Re 186.21		ı	61 Pm (145)	93 Np 237.048
6 VIB				Tre		51.996	Mo 95.94	74 W 183.85	106 Unh (263)		60 Nd 144.24	91 92 93 Pa U Np 231.036 238.029 237.048
5 VB					23	50.942	Nb 92.906	73 Ta 180.948	105 Unp (262)		59 Pr 140.908	91 Pa 231.036
4 IVB					22	47.88	Zr 91.224	* 72 Hf 178.49	† 104 Unq (261)		58 Ce 140.12	90 Th 232.038
3 IIIB					21 Sc	39	Y 88.906	57 La 138,905	89 Ac 227.028			,,,
2 IIA	The Active Metals 1 H H 008	4 Be 9.012	12 Mg	24.305	70 Ca	38	Sr 87.62	56 Ba 137.33	88 89 Ra Ac 226.025 227.028		*Lanthanides	† Actinides
- ¥	The A	3 Li 6.941	= 2	22.990	6 X	39.098	Rb 85.468	55 Cs 132.905	87 Fr (223)		*	17

Image by MIT OpenCourseWare

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.