
Referential Integrity and Relational 

Database Design 


Outline 

Correlated Updates - examples of UPDATEs only for SELECTed rows 

Review: The Relational Model

Review: Qualities of a Good Database Design

Review: Introduction to Entity-Relationship Modeling

Review: E-R Modeling Process

Review: From E-R Model to Database Design

Database Design Example

Database Normalization

Review: Database Design Rules of Thumb

Enforcing Referential Integrity in Oracle

Example: The Parcels Database

Parcels Database Enhancements


Review: The Relational Model 
• All data are represented as tables (relations) 
• Tables are comprised of rows and columns (tuples) 
•	 Rows are (officially) unordered (i.e., the order in which rows are referenced does 

not matter) 
• A proper relational table contains no duplicate rows. 
•	 Each table has a primary key, a unique identifier constructed from one or more 

columns 
• Most primary keys are a single column (e.g., OWNERNUM for OWNERS) 
•	 A table is linked to another by including the other table's primary key. Such an 

included column is called a foreign key 

Review: Qualities of a Good Database Design 
• Reflects real-world structure of the problem 
• Can represent all expected data over time 
• Avoids redundant storage of data items 
• Provides efficient access to data 
• Supports the maintenance of data integrity over time 



• Clean, consistent, and easy to understand 
• Note: These objectives are sometimes contradictory! 

Review: Introduction to Entity-Relationship Modeling 
• Entity-Relationship (E-R) Modeling: A method for designing databases 
• A simplified version is presented here 
• Represents the data by entities that have attributes. 
• An entity is a class of distinct identifiable objects or concepts 
• Entities have relationships with one another 
•	 Result of the process is a normalized database that facilitates access and avoids 

duplicate data 

Review: E-R Modeling Process 
• Identify the entities that your database must represent 
•	 Determine the cardinality relationships among the entities and classify them as 

one of 
o One-to-one (e.g., a parcel has one address) 
o One-to-many (e.g., a parcel may be involved in many fires) 
o	 Many-to-many (e.g., parcel sales: a parcel may be sold by many owners, 

and an individual owner may sell many parcels) 
• Draw the entity-relationship diagram 
• Determine the attributes of each entity 
• Define the (unique) primary key of each entity 

Review: From E-R Model to Database Design 
• Entities with one-to-one relationships should be merged into a single entity 
•	 Each remaining entity is modeled by a table with a primary key and attributes, 

some of which may be foreign keys 
•	 One-to-many relationships are modeled by a foreign key attribute in the table 

representing entity on the "many" side of the relationship (e.g., the FIRES table 
has a foreign key that refers to the PARCELS table) 

•	 Many-to-many relationships among two entities are modeled by a third table that 
has foreign keys that refer to the entities. These foreign keys should be included 
in the relationship table's primary key, if appropriate 

•	 Commercially available tools can automate the process of converting a E-R model 
to a database schema 

Database Design Example (from old exercise in 11.208) 
Cambridge Fire Department Database 



* • Problem Statement 
• Proposed Solution* 

Database Normalization 
Much of formal database design is focused on normalizing the database and ensuring 
that design conforms to a level of normalization (e.g., first normal form, second normal 
form, etc.). Although there are higher normal forms, Third Normal Form is generally 
considered good enough for typical applications. Normalization generally involves taking 
a design with fewer tables and fewer columns and transforming it into a design with more 
tables with more columns -- after conducting some tests and applying some rules. A good 
reference on first through third normal forms, with nice examples, can be found here: 

• David Faour's "Database Normalization" at swynk.com 

Other Database Normalization References: 

• Web Developer's Virtual Library 
• Stuart Graduate School of Business 
• Microsoft Product Support Services 
• PHPBuilder.com 
• About.com 
• SQL Server Magazine 
• Databasics at geekgirls.com 

Review: Database Design Rules of Thumb 
•	 Keep data items atomic (e.g., first and last names are separate). Concatenating 

columns together later on-the-fly is generally easy, but separating them is not. 
(First Normal Form) 

o	 What is an example of where parsing subfields from a column may go 
awry? 

o When might you want to include the combined fields in a column anyway? 
• Define the primary key first. Use a descriptive name (PARCELID, not ID) 
•	 In fact, use descriptive names that give a new user a decent chance of guessing 

what they mean for all your columns! (E.g., use PARCEL_COUNT rather than 
PACT) 

•	 Use a single column for the primary key whenever possible; multi-column 
primary keys are appropriate for many-to-many relationships 

• Use lookup tables rather than storing long values 
• Use numeric keys whenever possible (What about ZIP codes?) 
• Avoid intelligent keys (exception: lookup tables) 

* Kindly refer to the Lecture Notes section 

http://www.swynk.com/friends/faour/databasedesign1.asp
http://www.wdvl.com/Authoring/DB/Normalization/
http://www.stuart.iit.edu/courses/im510/database/english.htm
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q283878
http://www.phpbuilder.com/columns/barry20000731.php3
http://databases.about.com/library/weekly/aa080501a.htm
http://www.sqlmag.com/Articles/Index.cfm?ArticleID=4887&pg=1
http://www.geekgirls.com/database_dictionary.htm


•	 Avoid using multiple columns to represent a one-to-many relationship (e.g., 
columns such as CHILD1, CHILD2 in a table called PARENT rather than putting 
the children in a separate table. (First Normal Form) 

•	 For readability, use the primary key name for foreign keys unless the same 
foreign key is used multiple times in the same table (e.g., state of work and state 
of residence for a person might both be foreign keys that reference a table of 
states) 

•	 Do not include two columns whose values are linked together (e.g., county name 
and county ID) unless one of the columns is the primary key of the table (Third 
Normal Form) 

•	 Avoid allowing NULL values in columns that have a discrete range of possible 
values (e.g., integers between 1 and 10, inclusive) 

o Not applicable to DBF files, which do not support NULLs 
•	 Avoid using multiple tables with similar structures that represent minor variants 

on the same entity (e.g., putting Boston parcels and Cambridge parcels in separate 
tables). 

o Why is this rule often hard to practice with GIS? 
•	 Plan ahead for transferring data to a different database. For example, you may 

want to move data from Oracle to DBF, or Microsoft Access to Oracle. 
o	 Avoid column names with characters with other than UPPER CASE 

letters (A-Z), digits (0-9), and the underscore (_). Other characters may 
not be accepted by a database. Some database systems may be case 
sensitive with regard to column names, while others are not. 

o	 Keep your column names relatively short. Different databases support 
different numbers of characters in column names (e.g., 30 for Oracle, 64 
for Microsoft Access, 10 for DBF). Try to make column names differ in 
the first few characters rather than at the end to avoid column name 
duplication if the names are truncated during the conversion process (e.g., 
use COL1 and COL2, not LONG_COLUMN_NAME_1 and 
LONG_COLUMN_NAME_2). 

o	 Note that keeping column names short may be at odds with keeping your 
column names meaningful for neophytes. Be aware that you are making a 
tradeoff! 

•	 Remember that these are rules of thumb, not absolute laws! Bend the rules if you 
must but have a justification for your decision. The limitations of a GIS software 
package often provide a good reason. 

Enforcing Referential Integrity in Oracle 

Example: The Parcels Database* 

• Tables and Primary Keys 

* Kindly refer to the Lecture Notes section 



Table Primary Key 
PARCELS PARCELID 
OWNERS OWNERNUM 
FIRES PARCELID, FDATE 
TAX PARCELID 

• Cardinality Relationships 

Primary Table Columns Foreign Table Columns Cardinality 
OWNERS.OWNERNUM PARCELS.ONUM One-to-many 
PARCELS.PARCELID FIRES.PID, FIRES.WPB One-to-many 
PARCELS.PARCELID TAX.PARCELID One-to-one 

Parcels Database Enhancements 
• Define a single-column primary key for the FIRES table (FIRES.FIREID) 
•	 Merge the TAX and PARCEL tables or add the year to the tax table to keep track 

of taxes over time (changes the relationship to one-to-many) 
• Rename PARCELS foreign key ONUM to be consistent with the OWNERS table 
• Improve column names 


