MIT OpenCourseWare
|http://ocw.mit.edu
11.481J / 1.284J / ESD.192J Analyzing and Accounting for Regional Economic Growth Spring 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

Multipliers in Input-Output Model

Presentation to 11.481J

Weifeng Li

Introduction

- So far, we have learned the relationship between gross output and final demand based on Leontief Inverse Matrix:

$$
X=(I-A)^{-1} Y
$$

- We are more interested in assessing the effect on an economy of changes in final demand elements that are exogenous to the model of that economy.

$$
\Delta X=(I-A)^{-1} \Delta Y
$$

General Structure of Multipliers: Output Multiplier

- The simple output multiplier

(direct output + indirect output)
 direct output

Direct and indirect impacts on gross
$\begin{aligned} & \text { output when the final demand for the } \longleftarrow \\ & \text { jth sector changes by one unit, holding } \\ & \text { All other sectors constant. }\end{aligned}$ O ${ }_{j}=\sum_{i=1}^{n} \alpha_{i j}$

- The total output multiplier
(direct + indirect + induced output)
direct output Leontief coefficient with

$$
\bar{O}_{j}=\sum_{i=1}^{n+1} \bar{\alpha}_{i j}{ }_{l}^{\text {households included in }} \text { input coefficient matrix }
$$

Example

$$
\left.\right)
$$

Source: Miller and Blair (1985).

General Structure of Multipliers: Income Multiplier (1)

- The simple household income multiplier portion of simple output effect that is household income

$$
H_{j}=\sum_{i=1}^{n} a_{n+1, i} \alpha_{i j}
$$

- The total household income multiplier
\Rightarrow sum of income effects in each sector, or
\Rightarrow income row of the inverse matrix

$$
\bar{H}_{j}=\sum_{i=1}^{n+1} a_{n+1, i} \bar{\alpha}_{i j}=\bar{\alpha}_{n+1, j}
$$

Example

Household

$$
\bar{A}=\left(\begin{array}{cc:c}
.15 & .25 & .05 \\
.20 & .05 & .40 \\
\hdashline .30 & .25 & .05
\end{array}\right) \quad \quad \text { Household }=\left(\begin{array}{cc:c}
.15 & .25 & .05 \\
.20 & .05 & .40 \\
.30 & .25 & .05
\end{array}\right)
$$

$(I-A)^{-1}=\left(\begin{array}{cc}1.254 & .330 \\ .264 & 1.122\end{array}\right)$
$H_{1}=(.3)(1.254)+(.25)(.264)=.442$
$H_{2}=(.3)(.330)+(.25)(1.122)=.380$

Simple Household I ncome Multiplier

$$
\begin{aligned}
& (I-\bar{A})^{-1}=\left(\begin{array}{ccc}
1.365 & .425 & .251 \\
.527 & 1.348 & .595 \\
.570 & .489 & 1.289
\end{array}\right) \\
& \bar{H}_{1}=(.3)(1.365)+(.25)(.527)+(.05)(.570)=.570 \\
& \bar{H}_{2}=(.3)(.425)+(.25)(1.348)+(.05)(.489)=.489 \\
& \\
& \text { Total Household } \\
& \text { I ncome Multiplier }
\end{aligned}
$$

Source: Miller and Blair (1985).

General Structure of Multipliers: Income Multiplier (2)

- Type I income multiplier

$$
\begin{aligned}
& \left(\frac{\text { direct }+ \text { indirect income }}{\text { direct output }}\right) /\left(\frac{\text { direct income }}{\text { direct output }}\right) \\
& Y_{j}=\frac{H_{j}}{a_{n+1, j}}=\sum_{i=1}^{n} \frac{a_{n+1, k} \alpha_{i j}}{a_{n+1, j}}
\end{aligned}
$$

- Type II income multiplier

$$
\bar{Y}_{j}=\frac{\bar{H}_{j}}{a_{n+1, j}}=\sum_{i=1}^{n+1} \frac{a_{n+1, k} \bar{\alpha}_{i j}}{a_{n+1, j}}
$$

Example

$$
\begin{array}{ll}
\bar{A}=\left(\begin{array}{lll}
.15 & .25 & .05 \\
.20 & .05 & .40 \\
.30 & .25 & .05
\end{array}\right) \quad \bar{A}=\left(\begin{array}{lll}
.15 & .25 & .05 \\
.20 & .05 & .40 \\
.30 & .25 & .05
\end{array}\right) \\
(I-A)^{-1}=\left(\begin{array}{ll}
1.254 & .330 \\
.264 & 1.122
\end{array}\right) \quad(I-\bar{A})^{-1}=\left(\begin{array}{ccc}
1.365 & .425 & .251 \\
.527 & 1.348 & .595 \\
.570 & .489 & 1.289
\end{array}\right) \\
Y_{1}=\frac{(.3)(1.254)+(.25)(.264)}{.3}=1.47 & \bar{Y}_{1}=\frac{(.3)(1.365)+(.25)(.527)+(.05)(.570)}{.3}=1.90 \\
Y_{2}=\frac{(.3)(.330)+(.25)(1.122)}{.25}=.1 .52 \\
\bar{Y}_{2}=\frac{(.3)(.425)+(.25)(1.348)+(.05)(.489)}{.25}=1.96 \\
\text { Type I Income Multiplier } & \downarrow
\end{array}
$$

Type II Income Multiplier
Source: Miller and Blair (1985).

General Structure of Multipliers: Employment Multiplier

- The simple household employment multiplier

$$
E_{j}=\sum_{i=1}^{n} w_{n+1, i} \alpha_{i j}
$$

- The total household employment multiplier
- Type I employment multiplier

$$
W_{j}=\frac{E_{j}}{w_{n+1, j}}=\sum_{i=1}^{n} \frac{w_{n+1, i} \alpha_{i j}}{w_{n+1, j}}
$$

- Type II employment multiplier

Multipliers in Regional Models

Single-Region Input-Output Model

- Assumptions
- The technology for each sector at the regional level is identical to the technology in that sector at the national level
- The local input ratio for sector j

Multipliers in Regional Models

- Major difference
- Regional Input-Coefficient Matrix (A^{R})

| $A^{R}=\hat{P}^{*} A$, |
| :--- |\(\quad \hat{P}=\left[\begin{array}{ccc}p_{1}^{R} \& 0 \& ···

$$
\begin{array}{l}\text { National inpưt } \\
\text { coefficient matrix }\end{array}
$$

0 \& p_{2}^{R} \& ··· . .0

··· \& \& ···

0 \& 0 . . \& p_{n}^{R}\end{array}\right]\)

- Impact of Final Demand
$\begin{array}{ll}\begin{array}{ll}\text { Regional output } \\ \text { vector }(\mathrm{n} * 1)\end{array} & X^{R}=\left(I-A^{R}\right)^{-1} Y^{R}=(I-\hat{P} A)^{-1} Y^{R} \\ \downarrow & \\ \begin{array}{l}\text { Regional Leontief } \\ \text { inverse matrix }\left(n^{*} \mathrm{n}\right)\end{array} & \begin{array}{l}\text { Regional exogenous } \\ \text { final demand vector } \\ \left(n^{*} 1\right)\end{array}\end{array}$

Example Application: Regional InputOutput Modeling System (RIMS II)

- Question: What is the total impact on a region of building a new sports facility?
- Analysis Process:
- What is being studied?
- What is the affected region?
- What are the affected industries?
- Is there more than one phase?
- What are the initial changes (final demand, income and employment)?
- How to separate the initial changes?

Example Application: Regional InputOutput Modeling System (RIMS II)

- Region
- Phase 1: Construction of new sports facility
- Initial Change:
- \$100 M investment in construction of the sports facility

Calculating Total Output Impact

Final-demand output multiplier (dollars)	Output impact (dollars)
From Table 1.4	$\$ 100 \mathrm{~m} \times$ final-demand output multiplier $=$
2.1615	$216,150,000$

Source: http://www.bea.gov/regional/rims/

Calculating Total Income Impact

- Income Multipliers
- Simple household income multiplier
- Total household income multiplier
- Type I income multiplier
- Type II income multiplier

Calculating Total Income Impact

Final-demand earnings multiplier (dollars)	Earnings impact (dollars)
From Table 1.4	$\$ 100 \mathrm{~m} \times$ final-demand earnings multiplier $=$
0.6671	$66,710,000$

Source: http://www.bea.gov/regional/rims/

Calculating Total Employment Impact

Final-demand employment multiplier (jobs/million dollars of output)	Employment impact (jobs/million dollars of output)
From Table 1.4	$\$ 100 \mathrm{~m} \times$ final-demand employment multiplier $=$ $\mathbf{1 8 . 2 1 0 2}$
$1,821.02$	

Source: http://www.bea.gov/regional/rims/

Comments

- Multiplier effects are based on assumptions about the availability of un- or under-utilized resources and people to accommodate the effects (migration, unemployment etc.).
- 'Large multipliers' are NOT the same as 'large multiplier impacts'.
- Multipliers developed for a region or an industry within a region are representing the region or industry as a whole but not individual sub-regions or establishments with an industry.

References

- Bureau of Economic Analysis, 1997. Regional Multipliers: A User Handbook of the Regional Input-Output Modeling System (RIMS II). U.S. Department of Commerce; Bureau of Economic Analysis.
- Ronald E. Miller and Peter D. Blair. 1985. Input-Output Analysis: Foundations and_Extensions. Englewood Cliffs, NJ: Prentice-Hall, Inc., pp. 45-97, 100-148, 236-265.

