MIT OpenCourseWare http://ocw.mit.edu

11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Steps in Water and Sanitation Planning

- Problem Identification
- Organize Community Participation & Support
- Set Objectives
- Collect Data
- Formulate Alternatives
- Choose Best Method
- Develop Detailed Plan
- Build the System
- Operate and Maintain
- Monitor and Evaluate

Problem Identification

- Current water source is unacceptable, if:
 - <u>Water Quality</u> is bad;
 - <u>Water Quantity</u> is insufficient;
 - Inaccessible Water Source
 - <u>Unreliable Water Source</u>
- Water Quality is measured by laboratory or field testing, but oftentimes, this is difficult, so...
- Surveys...

Types of Surveys

- "Sanitary" Surveys (water/sanitation/hygiene)
- Infrastructure Survey
- Epidemiological Surveys
 - Prospective and Retrospective Cohort Surveys
 - Cross-Sectional Surveys (snapshot in time);
 - Longitudinal ecologic surveys (on-going surveillance over many years)
- Willingness-to-Pay Surveys (aka "Contingent Valuation")
- Focus Groups

• Example: Batey1, Dominican Republic

Batey – Dominican Republic

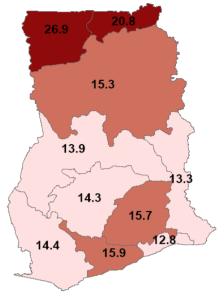
Batey, DR

Batey 1 Water Tower

Aquaduct

Community Participation and Support

- A successful program must include a plan for community support
- 3 ways to gain community support:
 - Promotion
 - Community involvement (community appraisal, user groups, mapping)
 - Training in O&M


Can you think of other ways?

Data Collection

- Population statistics
- Rainfall
- Environmental data
- Mapping
 - Community Mapping / Community Appraisal
 - GIS Mapping
- Community's development history
- Community resources
- Culture and customs
- http://www.scn.org/ip/cds/cmp/modules/par-par.htm

GIS & Data Mapping

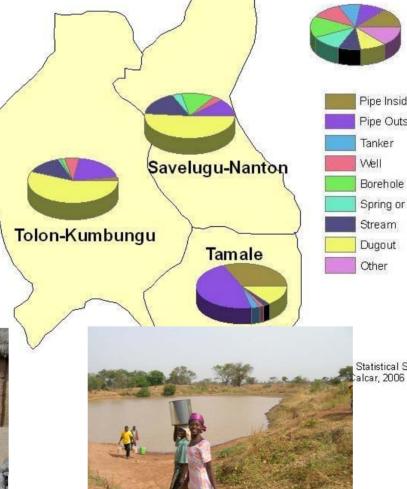
Percentage of Children Under 5 Years of Age With Diarrhoea

Diarrhea in Northern Region Ghana

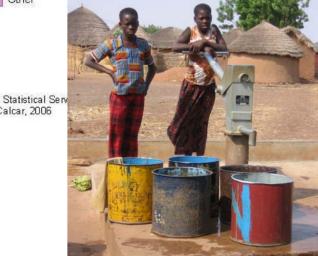
the Pure Home Water Operating Area Legend Dugouts Gbanyamn Villages 20-Wovugu Kamina Barracks > 1 km to a water source Jisonayili 🛛 19-Wovuguma 😋 10.1 18-Kulaa Within 1 km of a water source 16-Kpawumu 18.1 Rivers 21-Kalpohin 21.1 10.1 ¶17-Gbalahi 15-Taha 977 Roads 23-Kobilimahagu 1-Shenshegu Downtown 23.1 Tamale 24-Wurishie Kukuo 2-Kunyevila 3-Dungu Yepalsi Viten Estates ^{25.1} 4-Sagnarigu Dungu ۰ Kalariga 25-Wamale (Womali) 🕂 13-Kpanvo 6-Chenshegu 26-Tugu **0**13.1 7-Datoyeli 7.2007.3 .1 9-Fooshegu 8-Adubilivil 10.2 10-Wulanyili 10 1 27-Jantong Dagshl 27.1 Sakpalua 01234 Kilometers X

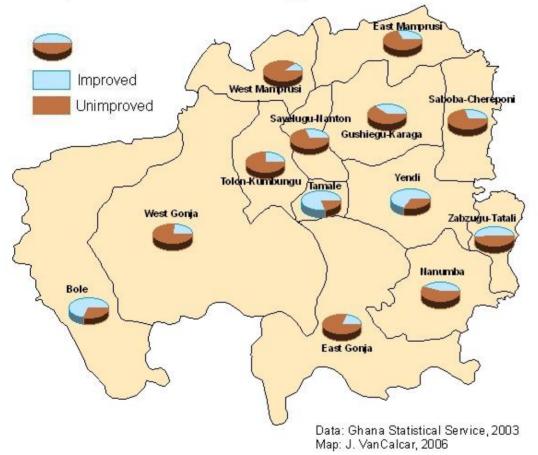
Villages and Water Sources Within

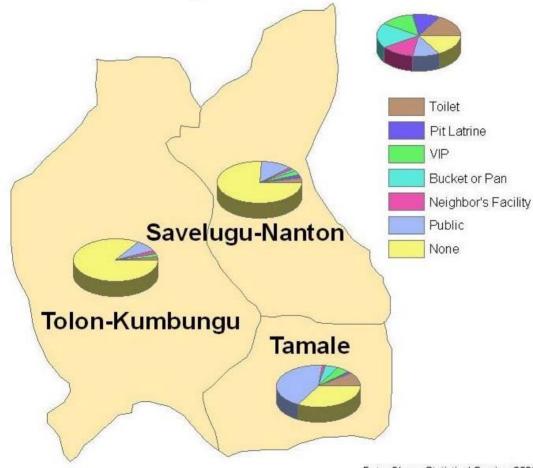
(Map: Jenny VanCalcor, 2006)



Types of Water Sources Used by Households

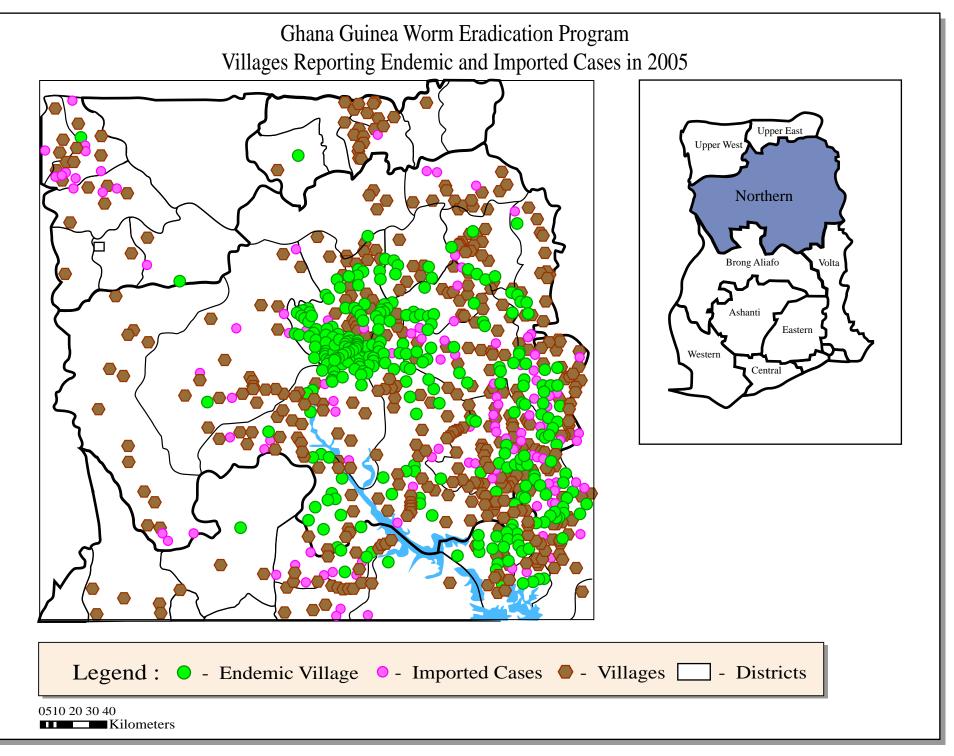





Percentage Use of Improved and Unimproved Drinking Water Sources

- Improved Sources
 - Boreholes
 - Household connection
 - Public standpipe
 - Rainwater harvesting
 - Protected Springs and dug wells
- Unimproved Sources
 - All surface water sources
 - Unprotected dug wells and spring
 - Tanker trucks
 - Vendor water

1 million out of 1.8 million people in the Northern Region are currently using an unimproved source


Types of Sanitation Facilities Used by Households

Latrine is the process of being built

Data: Ghana Statistical Service, 2003 Map: J. VanCalcar, 2006

Set Alternatives

OR

OR

OR...?

Choose the Best Alternative

 Question: What are some considerations (decision criteria) you might use to choose the best alternative?

Choose the Best Alternative

- Water supply characteristics (will it meet demand now? In 10 years?)
- Social acceptability community's needs
- Health factors
- Economic factors- willingness to pay
- Institutional context
- Accessibility
- Other... What do you think ...?

Develop the Plan

Question: What should be in the plan?

What's in the Plan?

- Proposed System
- Costs
- Sources of Finance
- Implementation Schedule
- Plan for Construction and Sources of Materials
- Energy Requirements
- Environmental Impacts
- Social Impacts
- Operation and Maintenance Requirements
- Other?

Monitor and Evaluate the System

- User Acceptance
- Water Quality
- Water Quantity
- Accessibility
- Reliability
- Proper Operation and Maintenance
- Financial sustainabilty
- Sustainable Yield
- Systems Thinking: Relationship to:
 - Sanitation
 - Hygiene interventions
 - Other?

Some Factors Affecting Planning

- Geographic Location, Environment & Climate
- Urban vs. Rural Population Growth and Density
- Settlement Patterns
- Domestic Water Use, Agriculture Water Use
- Culture

Geographic Location, Environment and Climate

Tropical Climates Hinder:

• Agricultural development

- Year-long insect problems
- Locusts are endemic in many regions
- Tsetses flies prevent use of animals for plowing
- Mineral resource development
 - Deep, highly weathered soils
 - Extraction is expensive, special equipment
- Human productivity
 - Disease and malnutrition
 - High temperature and humidity

Tropical Land Degradation

- Commodity crops
- Change from shifting cultivation
- Progressive problems
 - Poor agricultural practices reduce nutrients and organic matter
 - Vegetation and organic material are removed for fuel and fodder
 - Lack of vegetative cover causes erosion
 - Irrigation increases salinity content of soils
 - People abandon degraded land and move to other areas

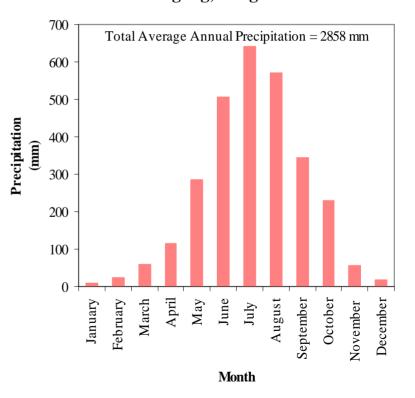
Environmental Factors - Rainfall

- Not uniformly distributed throughout the year
- Distinct wet and dry seasons
- Excessive precipitation and storms during the wet season often destroy crops
- Droughts common

Average Monthly Precipitation Washington, DC

700 Total Average Annual Precipitation = 1036 mm 600 500 Precipitation 400 (mm) 300 200 100 0 August October February March April June May September December July January November Month

Map removed due to copyright restrictions.


Average Monthly Precipitation Coban, Guatemala

700 Total Average Annual Precipitation = 2517 mm 600 500 Precipitation (uuu) 400 300 200 100 0 August October February March April June January September December May July November Month

Map removed due to copyright restrictions.

Map removed due to copyright restrictions.

Average Monthly Precipitation Chittagong, Bangladesh

Average Monthly Precipitation Dakar, Senegal

700 Total Average Annual Precipitation = 578 mm 600 500 Precipitation 400 (mm) 300 200 100 0 August September January February March April May June October December July November Month

Map removed due to copyright restrictions.

Environmental Factors - Heat

- No freezing temperatures in the tropics
 - Plant and animal pests and diseases reproduce throughout the year
 - Intense ecological competition
 - Quick turnover of soil organic matter
- UV radiation destroys plastics, rubber, and synthetics
- Heat and humidity cause corrosion of machinery

Environmental Factors - Soils

- Tropical soils are highly weathered
 - Low organic matter
 - Low nutrient contents
- Laterites (high iron clays)
 - Harden when exposed to sun and air
 - Used to build roads
- Alluvial and volcanic soils are the exception rich and fertile

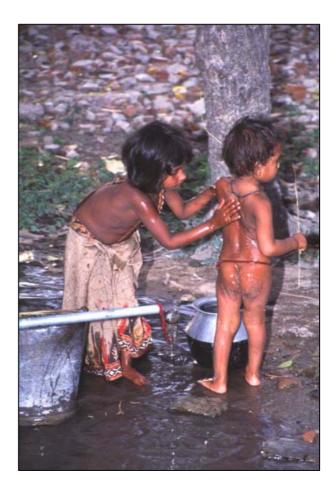
Community and Cultural Factors

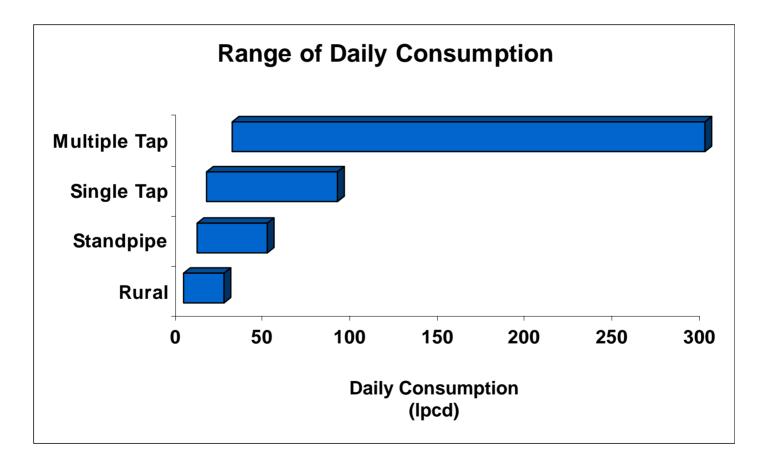
Communities in Northern Region Ghana

Traditional

(Photos: Rachel Peletz, 2006)

Non-Traditional





Patterns of Domestic Water Use

- Volume of water used depends on income
- Only the wealthy have large amounts of safe water
- In rural areas, water is often carried from a source outside the home
 - Performed by women and children
 - Requires time and energy
 - Opportunity cost for agriculture and other productive activities
- People may use different sources for different uses

- Domestic water uses
 - Bathing
 - Cooking
 - Dishwashing
 - Drinking
- Other water uses
 - Clothes washing (often done at water source)
 - Gardening
 - Livestock

Water Source	Consumption (Ipcd)
Rural springs, streams, etc.	2-25
Standpipes in cities/villages	10-50
Single tap in the home	15-90
Multiple taps in the home	30-300
United States	375-600

- Factors influencing water use and consumption
 - Cost money, time, and energy
 - How much women and children can carry
 - Distance to source
 - Time spent in line
 - Effort to pump or haul water from well
 - Woman's perception of quality based on aesthetics
 - Family size and family power structure
 - The larger the family, the lower the amount available per person
 - How much water the husband uses for bathing
 - Social norms
 - Is clothes washing usually done at source?
 - Socializing

- Factors influencing water use and consumption
 - Technology are pumps functional?
 - Reliability of the water source
 - Time of year (rainy or dry season)
 - Competing uses
- Other considerations
 - Women do most of the carrying, but men make most of the decisions
 - Location of house
 - Community improvements
 - How income is spent
 - Women are the ones most affected by community water projects, but they have little public voice

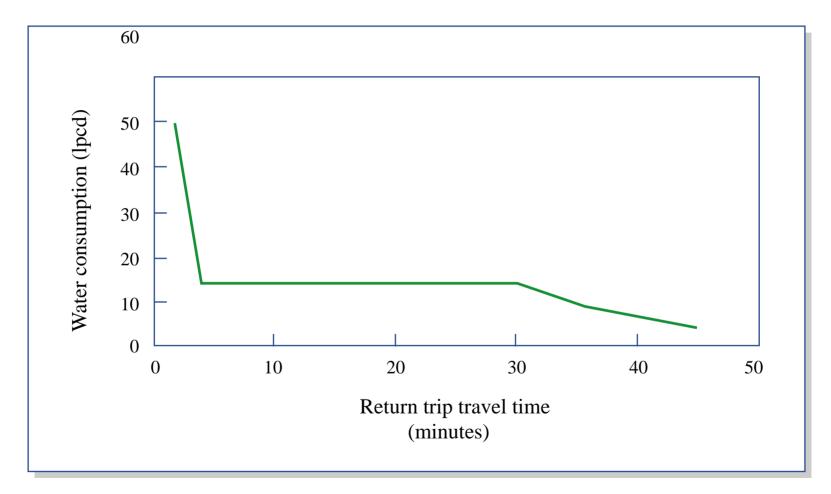


Figure by MIT OpenCourseWare.

Domestic Water Use

- 20 m3/person/year represents a global average.
- But water consumption varies widely
- Oman = 7 m3/person/year
- Japan = 90 m3/person/year
- USA = 200 m3/person/year

Global Water Use by Sector

	m3/person/yr	km3/yr	%
Domestic*	20	100	3
Industrial		200	5
Cooling		225	6
Livestock		40	1
Sub-Total		565	15
Agriculture		3,300	85
Total		3,865	100

(Clarke, R, 1993 and Vovich, M.I. 1977)

Global Water Use

- Irrigation = 70%
- Industry/Commercial = 20%
- Domestic = 10%

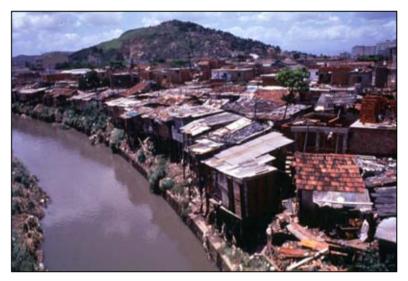
(Brown, L. 2003)

 Today, 2B people (1/3 human population) depend on groundwater for their water needs.

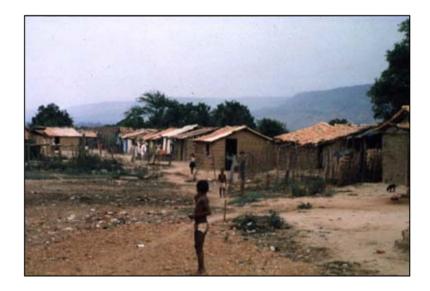
Water Systems Planning

- Case studies
 - Tanzania
 - Increased number of standpipes (increased access)
 - Consumption increased only 2 lpcd
 - Access was apparently reasonable prior to the project
 - Thailand
 - Designed system assuming 50-80 lpcd
 - Actual consumption
 - Standpipes: 9.6-36.8 lpcd
 - House connections: 24.4-65 lpcd
 - System was over designed, scarce resources were wasted
 - Could have provided water to more people for same cost

Water Systems Planning


- Recommended design figures
 - Standpipes: 25 lpcd
 - House connections: 50 lpcd
- Plan for losses leakage, illegal connections
- Planning for future growth
 - Should consider future growth and increased demand
 - Overestimating demand will waste limited capital funds
 - Try to make projects expandable, extendable, improveable

Water Systems Planning


- Planning for future growth
 - Providing excess capacity now may be more economical than adding it in the future – economies of scale
 - Industrialized countries design to meet demand for next 20 years
 - Developing countries
 - Design for next 5-10 years
 - Funds may not be available for longer periods
 - Do not want to tie up valuable resources that could be used elsewhere

Settlement Patterns

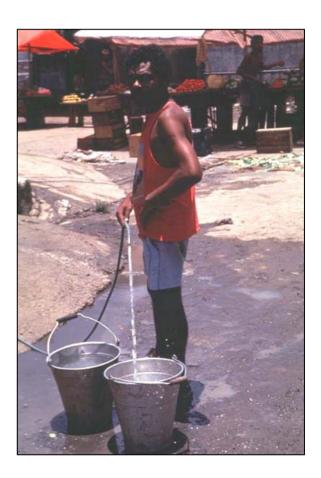
- Urban peripheries
- Rural clustered
- Rural scattered

Settlement Patterns – Urban Peripheries

- Usually unplanned housing layouts
- Includes both rural poor and urban poor (different views)
- High unemployment
- Water supply and sanitation is inadequate
- Public health is usually precarious
- Urban dwellers generally use more water than rural people
- Places for washing clothes and dishes or bathing may not be available
- Disposal of sullage (graywater) may be a significant problem

Settlement Patterns – Urban Peripheries

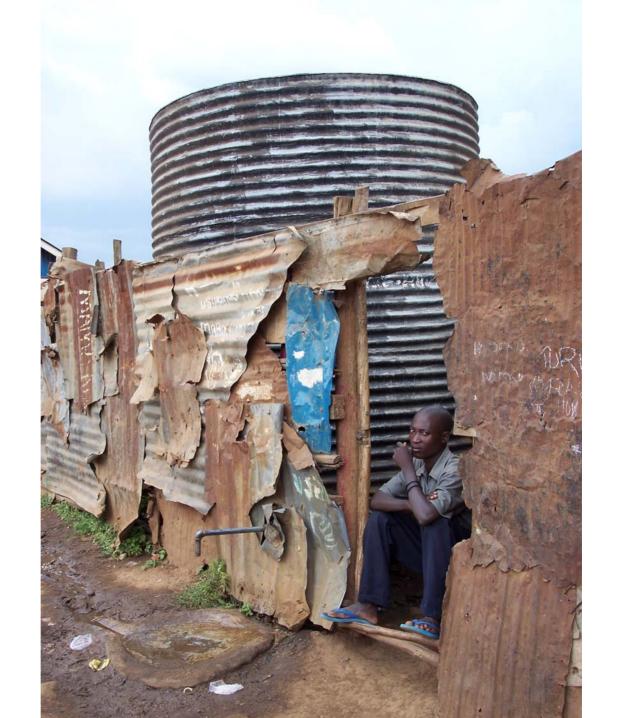
- Standpipes
 - May require a guard to prevent wastage, vandalism, and contamination by wastewater
 - Single standpipes often serve 500-3000 families long lines
 - Better figures are 50-100 families per pump
 - Overuse of hand pumps cause frequent pump failures
 - Inconvenience and unreliability may result in people using less desirable sources
 - Need to consider demand and maintenance during planning process


Shantytown outside Rio de Janeiro

Settlement Patterns – Urban Peripheries

• Vendors

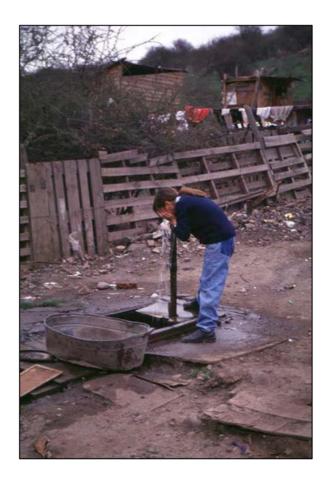
- Sell water from tank with a hose, or from tins from a cart
- Women may not want to be out on urban streets
- May be of dubious quality
- Costly



Public Vendors - Cameroon

Public Water Vendor

Kibera, Kenya



Settlement Patterns – Urban Peripheries

Source	Health Hazard	Cost
Taps	Low	High
Standpipes	Medium	Medium
Vendors	High	High
Surface	High	Low
Underground	High	Low
Rain-barrels	High	Low

Settlement Patterns – Rural Clustered

- Villages ranging from 50 to 5000 people
- Develop around a reliable source
- Have reasonable access to water
- Consumption does not change much until water is piped to homes

India

Nigeria

Settlement Patterns – Rural Clustered

Source	Health Hazard	Cost
Taps	Low	High
Standpipes	Low	Medium
Vendors	High	High
Surface	High	Low/High
Underground	High/Low	Low/High
Rain-barrels	Medium	Low

Settlement Patterns – Rural Scattered

- Considering women's role
 - Time spent carrying water is time lost from other activities
 - 80% of women participate in agriculture
 - In Africa, women produce approximately 80% of the food consumed by their families
 - Women collect and gather 80% of fuel supplies
 - Women perform 50% of house repairs
 - Women participate in 33% of house construction
 - Women do 100% of the cooking, cleaning, washing, and child care
 - Women receive a disproportionately smaller share of food, leisure time, and health care than men

Settlement Patterns – Rural Scattered

- Hauling water consumes a considerable portion of women's time
- Women may carry up to 40 liters (40 kg 88 lbs) per trip and may make several trips per day
- Men use more water for bathing since they don't carry the water
- Water stored in the home in 200-300 liter containers – not much storage
- Sullage often used for watering animals or irrigation – reduces water to be hauled

Settlement Patterns – Rural Scattered

Source	Health Hazard	Cost
Surface	High	Low/High
Underground	Low	Low/High
Rain-barrels	Low	Low

Carrying Water, Northern Region, Ghana

Kenya – Waiting for water

Kenya – Women-run water vending

References and More Info

- Brown, L. 1993. <u>State of the World</u>. World Watch Institute.
 W.W. Norton and Co. New York.
- Clarke, R. 1993. <u>Water: The International Crisis</u>, MIT Press, Cambridge, Massachusetts
- Shiklomanov, Igor. 1993. "World Fresh Water Resources," In <u>Water in Crisis</u>. Edited by P. H. Gleick. New York: Oxford University Press.
- USGS, 2006. <u>http://capp.water.usgs.gov/GIP/gw_gip/how_a.html</u>
- Vovich, M.I., 1997. "World Water Resources Present and Future," *Ambio* 6(1), 12-21. 1977.