11.220 Quantitative Reasoning & Statistical Methods for Planners I Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Quantitative Reasoning and Statistical Methods

Ezra Glenn

March 31, 2009

Ezra Glenn Quantitative Reasoning and Statistical Methods

	Immunization	No Immunization	Total
Before	56	144	200
After	34	166	200

(日)(個)(注)(主)(主)

	Immunization	No Immunization	Total
Before	56	144	200
After	34	166	200

"Before" Sample:

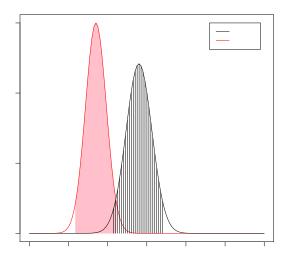
$$\begin{cases} \hat{p}_b = 56 \div 200 = .28\\ se_b = \frac{\sqrt{.28 \times .78}}{\sqrt{200}} = 0.0330 \end{cases}$$
(1)

"After" Sample:

$$\begin{cases} \hat{p}_a = 34 \div 200 = .17\\ se_a = \frac{\sqrt{.17 \times .83}}{\sqrt{200}} = 0.0266 \end{cases}$$
(2)

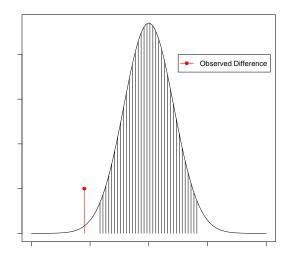
Pooled Error:

$$se_d = \sqrt{.0330^2 + .0266^2} = 0.0424$$
 (3)


$$\begin{cases} \hat{p}_b = 0.28\\ \hat{p}_a = 0.17\\ se_d = 0.0424 \end{cases}$$
(4)

Then use t-statistic:

$$t = \frac{\hat{p}_b - \hat{p}_a}{se_d} = \frac{.28 - .17}{.0424} = 2.59$$
(5)


which exceeds our t-critical for df=398.

 \therefore we can reject H_0 (i.e., we can conclude that the difference is significant)

Ezra Glenn Quantitative Reasoning and Statistical Methods

▲□> ▲@> ▲≧> ▲≧> <</p>

Ezra Glenn Quantitative Reasoning and Statistical Methods

▲□> ▲@> ▲≧> ▲≧> <</p>

	Table: All Respondents						
	Immunization	No Immunization	Total				
Before	56	144	200				
After	34	166	200				
	From 28%	down to 17%					

Table: With Health Insurance	
------------------------------	--

Table: Without Health Insurance

	lmm.	No	Total		lmm.	No	Total
		lmm.				lmm.	
Before	48	10	58	 Before	8	134	142
After	6	1	7	After	28	165	193
Fror	n 83%	up to 8	35%	 Fron	n 5.6%	<i>up</i> to 1	7%

You could also now test each of these for significance.

	Ezra Glenn	Quantitative Reasoning and Statistical M	
--	------------	--	--

Table: Observed Counts $(n = 60)$									
	1	2	3	4	5	6			
count	14	8	8	8	8	14			

(日)(個)(注)(主)(主)

Table: Observed Counts $(n = 60)$									
	1	2	3	4	5	6			
count	14	8	8	8	8	14			

Table: Expected Counts ($n = 60$)								
	1	2	3	4	5	6		
count	10	10	10	10	10	10		

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Table: Observed-Expected Counts									
	1	2	3	4	5	6	total		
observed	14	8	8	8	8	14	60		
expected	10	10	10	10	10	10	60		

$$\chi^{2} = \Sigma \frac{(observed - expected)^{2}}{expected}$$

$$\frac{4^{2}}{10} + \frac{2^{2}}{10} + \frac{2^{2}}{10} + \frac{2^{2}}{10} + \frac{2^{2}}{10} + \frac{4^{2}}{10} = 2 \times 1.6 + 4 \times .4 = 3.2 + 1.6 = 4.8$$

From table: $\chi^2_{critical} \ge 11.07$ (5 df, $\alpha = .05$, two-tailed). 4.8 < 11.07, \therefore we cannot reject H_0

	CDD	IDG	EPP	HCED	Total
non-minority applicants	98	70	40	43	251
minority applicants	16	6	5	23	50
total applicants	114	76	45	66	301

Table: DUSP Applications, Observed (2008)

	CDD	IDG	EPP	HCED	Total
non-minority applicants	98	70	40	43	251
minority applicants	16	6	5	23	50
total applicants	114	76	45	66	301

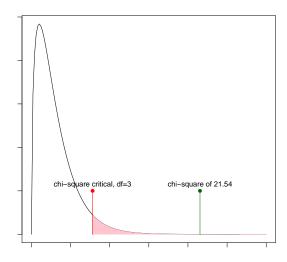

Table: DUSP Applications, Observed (2008)

Table: DUSP Applications, Expected (2008)

	CDD	IDG	EPP	HCED	Total
Non-minority	95.06	63.38	37.52	55.04	251
Minority	18.94	12.62	7.48	10.96	50
Total	114	76	45	66	301

Table: DUSP $\frac{(Observed - Expected)^2}{Expected}$ Cell Contributions							
	CDD	IDG	EPP	HCED			
Non-minority	0.09	0.69	0.16	2.63			
Minority	0.46	3.48	0.82	13.21			

 $\chi^2 = 0.09 + 0.69 + 0.16 + 2.63 + 0.46 + 3.48 + 0.82 + 13.21 = 21.54$ df = 3, significant at p < .001

Ezra Glenn Quantitative Reasoning and Statistical Methods

	CDD	IDG	EPP	Total
non-minority applicants	98	70	40	208
minority applicants	16	6	5	27
total applicants	114	76	45	235

Table: DUSP Applications, Observed (2008)

Table: DUSP Applications, Expected (2008)

	CDD	IDG	EPP	Total
Non-minority	100.90	67.27	39.83	208
Minority	13.10	8.73	5.17	27
Total	114	76	45	235

		•	,	,
	CDD	IDG	EPP	Total
Non-minority	100.90	67.27	39.83	208
Minority	13.10	8.73	5.17	27
Total	114	76	45	235

Table: DUSP Applications, Expected (2008)

Table	: DUSP $\frac{(Observed)}{E \times p}$	— Expected pected) ² Cell (Contribu	tions
-		CDD	IDG	EPP	
-	Non-minority	0.08	0.11	0.00	
	Minority	0.64	0.85	0.01	

 $\chi^2 = 1.7$ df = 2, not significant at p < .05