

## D Lab: Supply Chains Lectures 4 and 5



Class outline:

- What is Demand?
- Demand management
- Forecasting Demand
  - Bass Model
  - Causal Models
  - Exponential Smoothing

|                  | ARTI | Air Liquide | Wecycler | Ghonsla | BPS |  |
|------------------|------|-------------|----------|---------|-----|--|
| Sinead Cheung    |      | 1           |          |         |     |  |
| Neha Doshi       | 1    |             |          |         |     |  |
| Emily Grandjean  | 1    |             |          |         |     |  |
| Shannon Kizilski | 1    |             |          |         |     |  |
| Cherry Park      |      | 2           |          |         |     |  |
| Sanjana Puri     |      |             | 2        |         |     |  |
| Jessica Shi      |      |             | 1        |         |     |  |
| Spencer Wenck    |      |             |          |         | 1   |  |
| Chelsea Yeh      |      | 1           |          |         |     |  |
| Daniel           |      |             | 1        |         |     |  |
|                  |      |             |          |         |     |  |
|                  |      |             |          |         |     |  |

## Who is Alex Rogo?

If you don't know, it means you are not reading "The Goal"...

### Assignment: Next Monday

Book Review

This assignment is due at the beginning of class. Prepare a one page summary of *The Goal* formatted as follows:

1. List your (at most) 5 main take-aways from the book (at most 2-3 sentence each); and

2. List the (at most) 3 main critiques (at most 2-3 sentence each) you would make about this book

#### **Demand Management**



#### **Demand Management**



#### What is demand?

From the Merriam-Webster dictionary,

Demand is the quantity of a commodity or service wanted at a specified price and time.

- How can we deal with demand from a SC point of view?
- Why is anticipating demand important?

## Why forecast? - Two SC strategies

Two supply chain strategies for dealing with demand are

- Make-to-order (MTO): the company chooses to manufacture a product only after a request from a customer is received.
- Make-to-stock (MTS): based on forecasts production is done in anticipation of future demand.

#### Two SC strategies - Examples

#### Make-to-order (MTO)

- Construction Industry
- Customized products
- Services/Food

#### Make-to-stock (MTS)

- Vaccines and medicine
- Most consumer goods
- Agricultural Products



## More examples?

#### Two SC strategies - Tradeoffs

|                                    | MTS          | ΜΤΟ          |
|------------------------------------|--------------|--------------|
| Economies of Scale                 | $\checkmark$ |              |
| More dependent on demand forecasts | <b>~</b>     |              |
| Longer lead time for customers     |              | $\checkmark$ |
| Easier to scale-up                 | $\checkmark$ |              |
| Customizable products              |              | ~            |

#### Forecasting is important for both models

© Stephen C. Graves 2014

#### Two SC strategies - Emerging Markets

In the context of emerging markets, think about the following question:

Can you give examples of products for which a MTO model "makes sense" in a developed economy but not in an emerging economy?

#### More reasons why forecasting is important

- Forecast used for inventory planning at retail store level and at DC level for products held in stock (ie, MTS)
- Forecast used to determine when to order more inventory
- Need for simple, robust methods applicable for wide range of contexts

#### Forecast principles

- 1. Forecasts are **always wrong** and should always include some measure of error
- 2. The longer the horizon, the larger the error
- Method should be chosen based on need and context



© Stephen C. Graves 2014

### Forecasting – formal definition



### Forecasting – formal definition



#### How would you forecast seminar lunch boxes?

© Stephen C. Graves 2014

#### Factors for choosing forecast method

- How is forecast to be used? Need for accuracy? Units? Time period? Forecast horizon? Frequency of revision?
- Availability and accuracy of relevant data? censored?
- Computational complexity? Data requirements?
- How predictable is the entity? Are there independent factors that affect it or are correlated to it?
- Level of aggregation? Across geographies? Time? Product categories?
- Type of product? New or old?

## Types of forecasts

- Qualitative; expert opinions
- Diffusion models
- Causal models, eg, regression
- Disaggregation of an aggregate forecast
- Aggregation of detailed forecasts
- Time series methods

## Types of forecasts



# Forecasting the adoption of new products

#### **Example: Water Purifier**

Assume you are responsible for estimating a demand for a new cheap and efficient water purifier. How would you do it?



### The Bass Diffusion Model

- Is a model for adoption of new products (consumer durables)
- One of the 10 most influential papers of "Management Science" in the last 50 years
- Widely used in marketing and strategy
- We will build the model from first principles



## The Bass Diffusion Model

Key idea: consumers are divided into 2 groups:

#### Innovators

- Early adopters
- Not influenced by other individuals
- Driven by advertisement or some other external effect

#### **Imitators**

- Influenced by other buyers
- Word of mouth
- Network effects

#### Motivation for the Bass model

Total: N







= 0





Probability of adoption = p





### Motivation (board)

- Market size: N
- Number of new adopters at time t:  $n_t$
- Total number of adopters at time t:  $N_t$
- Probability of being an innovator: r
- Probability of an innovator adopting at time t:
- Probability of an imitator adopting at time t:

• Define 
$$\tilde{p} = pr;$$
  $\tilde{q} = (1-r)q$ 

p

 $N_{t-1}$ 

#### Bass Model

 We can approximate the model we just described by

$$\bar{n}_t = (N - N_{t-1}) \left( \bar{p} + \bar{q} \frac{N_{t-1}}{N} \right), \quad N(0) = c$$

• The continuous differential equation becomes

$$\frac{dN(t)}{dt} = (N - N(t)) \left( \tilde{p} + \tilde{q} \frac{N(t)}{N} \right)$$
Innovators
© Stephen C. Graves 2014

#### Bass Model

• Thus, for the continuous approximation, we have, for N(0) = 0, the solution



#### Estimation of parameters

- What parameters do we need to estimate?
  - Market Size N
  - Imitation  $\tilde{q}$
  - Innovation  $\tilde{p}$
- How do we estimate?
  - Early data + linear regression
  - Analogy (priors)
  - Focus groups
  - Macro Data
- What is missing?

#### Generalized Bass Model

• Let "marketing effort" evolve as x(t). The new equation is:

$$\frac{dN(t)}{dt} = (N - N(t)) \left(\tilde{p} + \tilde{q}\frac{N(t)}{N}\right) x(t)$$

- When estimating or doing focus groups, try to map price vs. demand group
- Create a model for different prices

#### **Bass Model Examples**



## DIRECTV

- Launched in 1992
- How many people would subscribe to satellite TV and when?
- New technology
- p and q were estimated by analogy
- N was determined by market research and focus groups



#### DIRECTV

|                 | 1992 Forecast<br>Number of<br>TV Homes<br>Acquiring DBS                                         | Actual Number<br>of TV Homes<br>Acquiring DBS | 1992 Forecast<br>of Percent<br>of TV Homes<br>with DBS | Actual Yearly<br>Percent of<br>TV Homes<br>with DBS |
|-----------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| Year            | (Millions)                                                                                      | (Millions)                                    | (Percentage)                                           | (Percentage)                                        |
| 7/01/94-6/30/95 | 0.875                                                                                           | 1.15                                          | 0.92                                                   | 1.21                                                |
| 7/01/95-6/30/96 | 2.269                                                                                           | 3.076                                         | 2.37                                                   | 3.21                                                |
| 7/01/96-6/30/97 | 4.275                                                                                           | 5.076                                         | 4.42                                                   | 5.25                                                |
| 7/01/97-6/30/98 | 6.775                                                                                           | 7.358                                         | 6.95                                                   | 7.55                                                |
| 7/01/98-6/30/99 | 9.391                                                                                           | 9.989                                         | 9.55                                                   | 10.16                                               |
|                 | Millions of Homes with Satellite TV<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 95-96 96-97 97-98                             | 98-99                                                  |                                                     |

© Stephen C. Graves 2014

#### Fitting the Bass Model

The Bass difference equation is



#### We can fit this equation to the data!

© Stephen C. Graves 2014
#### **Causal Models**

# Example – Dengue in India

- Dengue is transmitted by a mosquito, the Ades Aegypti
- During Summer monsoon, stagnant water accumulates



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- This leads to a proliferation of mosquito reproduction
- A increase in mosquitos increases dengue transmission



# Example – Dengue in India

 Causal models are very useful to estimate the occurrence of weather related diseases (and the demand for medicine/vaccines).

 Consider the relationship between monthly rainfall and the occurrence of Dengue Fever in India

#### Example – Dengue in India



#### **Causal Models**

#### Can you think of other examples?



 Used when there is limited information available about exogenous factors that influence demand

Short horizon forecast (usually < 1 year)</li>

 We will discuss methods that are easy to implement

#### Time Series – Components of Demand

In practice, it is useful to understand and estimate 4 components of demand: **mean**, **trend**, **seasonality** and **randomness**.



© Stephen C. Graves 2014

### Randomness

- Usually modeled using probability distributions
- Two components: mean and variance

– Mean: Average Value

- Variance: "spread"



Randomness

ę –

S

0

ĥ

-10

 $D_t = \mu_t + \epsilon_t$ 

#### Assume demand has the form

Permanent component: Mean, trend, seasonality

In addition, assume that  
Mean: 
$$E[\epsilon_t] = 0$$
  
Variance:  $var(\epsilon_t) = \sigma^2$ 

Assume demand has the form

$$D_t = \mu_t + \epsilon_t$$

In addition, assume that  $E[\epsilon_t] = 0 \operatorname{var}(\epsilon_t) = \sigma^2$ 

Forecast method determines

 $S_t$ : Expost estimate of the permanent component

 $F_{t+\tau}$  : forecast at time  $\tau$ 

• What is permanent component and expost estimate?

Expost estimate is where we "think" that the permanent component is in the time period

 We are ready to discuss forecasting methods

# Moving Average

- Recent observations are more "informative" than old observations
- Uses n previous observations
- Expost estimate of the permanent component  $\mu_t$  is

$$S_t = \frac{D_{t-n+1} + \ldots + D_{t-1} + D_t}{n}$$

• Forecast is  $F_{t+\tau} = S_t, \ \forall \tau > 0$ 

# Moving Average

• Advantages: Simple, only one "knob" (n)

 Disadvantages: weighs all previous demand equally

• Example

# Weighted Moving Average

• Weighs previous observations using weights  $w_1, \ldots, w_n$  where

n

$$\sum_{i=1}^{n} w_i = 1$$

• We have the expost estimate

$$S_t = w_1 D_t + w_2 D_{t-1} + \ldots + w_n D_{t-n+1}$$
  
and the forecast (again) is

$$F_{t+\tau} = S_t, \ \forall \tau > 0$$

# Weighted Moving Average

- Advantages: Flexibility
- Disadvantages: too many "knobs"

Solution: Exponential Smoothing

# **Exponential Smoothing**

Weighs previous observations using a geometric time series such that

$$w_i = \alpha (1 - \alpha)^{i-1}$$

Note that

$$\sum_{i=1}^{\infty} w_i = 1$$

 $\sim$ 

#### Thus,

$$S_{t} = \alpha D_{t} + \alpha (1 - \alpha) D_{t-1} + \alpha (1 - \alpha)^{i-2} D_{t-2} + \dots$$
$$S_{t} = \alpha D_{t} + (1 - \alpha) S_{t-1}$$

# **Exponential Smoothing**

- Only one parameter to adjust  $\alpha$
- Doesn't weigh previous forecasts equally

Very simple update equation

Examples

# Exponential Smoothing vs. Moving Average

Assume permanent component is constant

$$\mu_t = \mu$$

• For exponential smoothing:

$$E[S_t] = \mu$$
 ,  $\operatorname{var}(S_t) = \frac{lpha}{2-lpha}\sigma^2$ 

• For moving average

$$E[S_t] = \mu$$
,  $\operatorname{var}(S_t) = \frac{\sigma^2}{n}$ 

- So far, we did not explicitly estimate seasonality or trend
- Assume that the permanent component is



© Stephen C. Graves 2014

So far, we did not explicitly estimate seasonality or trend

• Assume that the permanent component is

$$\mu_t = (m+bt)c_t$$

Demand is

$$D_t = (m+bt)c_t + \epsilon_t$$

Assume we know that the length of a season is L

• Let  $x_t = m + bt$  be the deseasonalized permanent component

• We now need to estimate,  $m, b, c_t$ 

Idea: Exponential smoothing on all the parameters!

Deseasonalized demand

$$x_t = m + bt \longrightarrow X_t$$

• Trend

$$b_t \longrightarrow B_t$$

Seasonal factor

$$c_t \longrightarrow C_t$$

Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha) (X_{t-1} + B_{t-1})$$
  
Where we think the deaseason. permanent component will be

#### **Deseasonalized demand**

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

$$\downarrow$$
Deaseasonalized demand

#### Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

Trend

$$B_t = \beta (X_t - X_{t-1}) + (1 - \beta) B_{t-1}$$

#### Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

Trend  $B_t = \beta (X_t - X_{t-1}) + (1 - \beta)B_{t-1}$   $\downarrow$ Smoothing coefficient

#### Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

Trend

$$B_{t} = \beta \underbrace{(X_{t} - X_{t-1})}_{\downarrow} + (1 - \beta) B_{t-1}$$
  

$$\downarrow$$
  
Estimate of slope

#### Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

Trend

$$B_t = \beta (X_t - X_{t-1}) + (1 - \beta) B_{t-1}$$

#### Seasonality

$$C_t = \gamma \frac{D_t}{X_t} + (1 - \gamma)C_{t-L}$$

© Stephen C. Graves 2014

#### Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

Trend

$$B_t = \beta (X_t - X_{t-1}) + (1 - \beta) B_{t-1}$$

Seasonality

$$C_t = \gamma \frac{D_t}{X_t} + (1 - \gamma)C_{t-L}$$

© Stephen C. Graves 2014

.

#### Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

Trend

$$B_t = \beta (X_t - X_{t-1}) + (1 - \beta) B_{t-1}$$

Seasonality

$$C_t = \gamma \frac{D_t}{X_t} + (1 - \gamma)C_{t-L}$$

© Stephen C. Graves 2014

.

#### Deseasonalized demand

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$

Trend

$$B_t = \beta (X_t - X_{t-1}) + (1 - \beta) B_{t-1}$$

Seasonality  $C_t = \gamma \frac{D_t}{X_t} + (1 - \gamma)C_{t-L}$ 

© Stephen C. Graves 2014

#### Forecast

• Given

$$X_{t} = \alpha \frac{D_{t}}{C_{t-L}} + (1 - \alpha)(X_{t-1} + B_{t-1})$$
$$B_{t} = \beta(X_{t} - X_{t-1}) + (1 - \beta)B_{t-1}$$
$$C_{t} = \gamma \frac{D_{t}}{X_{t}} + (1 - \gamma)C_{t-L}$$

• The forecast is

$$F_{t+\tau} = (X_t + \beta_t \cdot \tau)C_{t+\tau}$$

© Stephen C. Graves 2014



# Wrap-up

|                         | Variables          | Info |
|-------------------------|--------------------|------|
| Moving Average          | n                  | none |
| Weighted moving Average | $(w_1,\ldots,w_n)$ | none |
| Exponential Smoothing   | lpha               | none |
| Holt-Winters            | $lpha,eta,\gamma$  | L    |

MIT OpenCourseWare http://ocw.mit.edu

15.772J / EC.733J D-Lab: Supply Chains Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.