Determination of Expected Profit for Newsboy for Uniform Demand

Assume that demand is from a uniform distribution from interval [1, 100]
$\Pi(Q)$ is the expected profit for the newsboy from ordering Q units.
$\operatorname{Pr}[D=j]$ denotes the probability that the demand equals j , for some given value of j .

$$
\Pi(Q)=\sum_{j=1}^{Q} \operatorname{Pr}[D=j] \times(p j+s(Q-j))+\sum_{j=Q+1}^{100} \operatorname{Pr}[D=j] \times(p Q)-c Q
$$

Explanation:

- The first summation is over the demand realizations that are less than the order quantity Q; if demand equals j and if $j<Q$, then the newsboy will sell j units at price p and salvage ($\mathrm{Q}-\mathrm{j}$) units at s .
- The second summation is over the demand realizations that are more than the order quantity Q; in these cases, the newsboy can only sell Q units at price p.
- The last term is what the newsboy pays for ordering Q units.

If demand is from a uniform distribution from interval [1, 100], then $\operatorname{Pr}[D=j]=\frac{1}{100}$ for all values of $\mathrm{j}=1,2, \ldots 100$.

We can approximate $\Pi(Q)$ by assuming that demand is from a continuous distribution, uniformly distributed over the interval $(0,100)$:

$$
\begin{aligned}
\Pi(Q) & \approx \int_{x=0}^{x=Q} \frac{p x+s(Q-x)}{100} d x+\int_{x=Q}^{100} \frac{p Q}{100} d x-c Q \\
& =(p-c) Q-(p-s) \frac{Q^{2}}{100}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.772J / EC.733J D-Lab: Supply Chains

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

