Optimizing the Supply-Chain Configuration for New Products

Presented by

Stephen C. Graves

Sean Willems

Stephen C. Graves Copyright 2005

Talk Outline

- Problem definition
- Current practice
- Digital camera example
- Comparison of solution approaches
- Observations
- Next steps

Sourcing Optimizer Motivation

• How to configure a new product's supply chain?

- Various vendors can supply a raw material
- Multiple processes can produce assembly
- Two vendors can deliver an identical product. Which one do you pick?
 - A quotes 100 days at \$1.00 per unit
 - B quotes 3 days at \$1.10 per unit

Relevant Supply Chain Costs

- Cost-of-goods sold
- Safety stock cost
- Pipeline stock cost
- Time-to-market cost
- Quality cost
- Capacity and flexibility cost

Current Practice = Target Costing

- Market price set outside the design group
- Gross margin for product is set
- This dictates product's maximum unit cost
- Maximum unit cost bounds UMC
- UMC is then allocated to subassemblies
 - Having established target UMC, designers independently source their portion of the supply chain

Current Practice

 Numerous factors to consider when choosing options

- Functionality, price, quality, flexibility, etc
- Firm establishes minimum thresholds for each factor. Chooses minimum cost parts and processes among qualifying set
- Justification for current approach
 - Other factors are difficult, if not impossible, to quantify
 - UMC will dictate whether or not product's business case is successful
 - Design team is not the same team that has to live with the options selected

Sourcing Optimizer Problem Statement

- Define a supply chain configuration as the set of options selected for each stage in supply chain
- Stages include procurement; production, assembly and test processes; distribution channels; and transportation modes
- Intent: develop a DSS for determining options in SC configuration, given a stable product design

Digital Camera Example

Pro-sumer model

- Annual demand has a mean of ~4750 units and a standard deviation of ~145

Three major subassemblies

- Imager
- Circuit board
- Camera body

• Two customer markets: US and export

Digital Camera Supply Chain

Stephen C. Graves Copyright 2005

Component/Process	Product.			
Description	Option	Time	Cost	
Raw Silicate	1	60	\$5	
	2	20	\$8	
Wafer Fab	1	30	\$800	
	2	8	\$825	
Wafer Pkg. and Test	1	10	\$200	
	2	5	\$225	
CCD Assembly	1	5	\$200	
	2	2	\$250	
Miscellaneous Components	1	30	\$200	
Parts w/ 8 Week LT	1	40	\$105	
	2	20	\$108	
	3	10	\$109	
	4	0	\$110	
Parts w/ 4 Week LT	1	20	\$175	
	2	10	\$177	
	3	0	\$179	

Note: All data has been disguised by scaling

Stephen C. Graves Copyright 2005

Component/Process	Product.			
Description	Option	Time	Cost	
Parts w/ 2 Week LT	1	10	\$200	
	2	0	\$203	
Parts on Consignment	1	0	\$225	
Circuit Board Assembly	1	20	\$225	
	2	5	\$300	
Camera Body	1	70	\$650	
	2	30	\$665	
Accessory Processing	1	40	\$100	
Local Accessory Inv.	1	10	\$60	
Camera Assembly	1	6	\$420	
	2	3	\$520	
Central Distribution	1	5	\$180	
US Demand	1	5	\$12	
	2	1	\$25	
Export Demand	1	11	\$15	
	2	2	\$40	

Stephen C. Graves Copyright 2005

Three Solution Approaches

- Minimize unit manufacturing cost
- Minimize production time
- Minimize supply chain costs

SC Configuration Model

• Based on strategic inventory placement model, Graves and Willems (1998)

 Assumes bounded demand, fixed and guaranteed service times, deterministic lead times, periodic review base-stock control

• Supply chain configuration solved as DP with 2-dimensional state space

Solution Comparison

	Current Policy	Min UMC	Min Prod Time	Min SC Costs
COGS (\$MM)	17.85	17.85	19.4	18.02
Inventory Cost (\$MM)	1.22	1.16	0.6	0.85
Total Configuration Cost (\$MM)	19.07	19.01	20.0	18.87
Unit Manufacturing Cost	\$3,756	\$3,756	\$4,078	\$3,794
Length of Longest Path	127 dys	127 dys	45 days	118 dys

Component/Process	Product.		
Description	Option	Time	Cost
Raw Silicate	1	60	\$5
	2	20	\$8
Wafer Fab	1	30	\$800
		8	\$825
Wafer Pkg. and Test	1	10	\$200
		5	\$225
CCD Assembly	1	5	\$200
		2	\$250
Miscellaneous Components	1	30	\$200
Parts w/ 8 Week LT	1	40	\$105
	2	20	\$108
	3	10	\$109
	4	0	\$110
Parts w/ 4 Week LT	1	20	\$175
	2	10	\$177
	3	0	\$179

Component/Process	Product.			
Description	Option Time Cost			
Parts w/ 2 Week LT	1	10	\$200	
	2	0	\$203	
Parts on Consignment	1	0	\$225	
Circuit Board Assembly	1	20	\$225	
	2	5	\$300	
Camera Body	1	70	\$650	
	2	30	\$665	
Accessory Processing	1	40	\$100	
Local Accessory Inv.	1	10	\$60	
Camera Assembly	1	6	\$420	
	2	3	\$520	
Central Distribution	1	5	\$180	
US Demand	1	5	\$12	
	2	1	\$25	
Export Demand	1	11	\$15	
	2	2	\$40	

Role of Holding Cost

	15%	30%	45%	60%
Raw Silicate	1	1	1	1
Wafer Fab	1	1	1	2
Wafer Pkg. and Test	1	1	1	1
CCD Assembly	1	1	1	1
Miscellaneous Components	1	1	1	1
Parts w/ 8 Week LT	1	3	4	4
Parts w/ 4 Week LT	1	2	3	3
Parts w/ 2 Week LT	1	1	2	2
Parts on Consignment	1	1	1	1
Circuit Board Assembly	1	1	1	1
Base Assembly	2	2	2	2
Accessory Processing	1	1	1	1
Local Accessory Inv.	1	1	1	1
Digital Capture Device Assembly	1	1	1	1
Central Distribution	1	1	1	1
US Demand	1	2	2	2
Export Demand	1	2	2	2

Inventory Investment and UMC Interaction

Initial Investment (\$MM)	UMC (\$/unit)	COGS (\$MM)
3.3	3,773	17.9
2.8	3,794	18.0
2.7	3,800	18.1
2.5	3,825	18.2

Observations

- SC optimization saves \$194K; three times the savings from SIP
- Optimization did not make some "obvious" choices
- Increasing unit manufacturing cost by \$37 is significant. Need to determine increases in an optimization-based, data-driven manner
- As you move farther downstream in the supply chain, higher cost options can be more attractive
- More complex the supply chain, more likely optimization will find opportunities

Next Steps

- Verify/validate the model in practice
- Develop software to disseminate
- Incorporate side constraints, e.g. number of vendors