Queuing Formula: Single ServerLittle's law : L= λ WUtilization : $\rho = \frac{\lambda}{\mu} = \lambda \tau$ W = expected wait time in system = $D + \frac{1}{\mu} = D + \tau$

D = expected wait time in queue for G1/G/1

$$\approx \frac{\rho}{1-\rho} \left(\frac{1}{\mu} \right) \left(\frac{SCV_a + SCV_s}{2} \right)$$

$$\approx \frac{\rho}{1-\rho} (\tau) \left(\frac{SCV_a + SCV_s}{2} \right)$$

Queuing Formula: Multiple Servers
For M/M/k system:
$$D = \left(\frac{1}{k\mu - \lambda}\right) \left(\frac{(k\rho)^{k}}{(1-\rho)k!}\right) \pi_{0} = \left(\frac{\rho}{1-\rho}\right) \left(\frac{1}{\mu}\right) \left(\frac{(k\rho)^{k-1}}{(1-\rho)k!}\right) \pi_{0}$$
where $\pi_{0} = \frac{1}{\frac{(k\rho)^{k}}{(1-\rho)k!} + \sum_{i=0}^{k-1} \frac{(k\rho)^{i}}{i!}}$ and $\rho = \frac{\lambda}{k\mu}$

D = expected wait time in queue for M/G/k $\cong (\text{expected wait time in queue for M/M/k}) \left(\frac{1 + \text{SCV}_s}{2}\right)$ A quick approx. is $D \approx \frac{\rho}{1 - \rho} \left(\frac{\tau}{k}\right) \left(\frac{\text{SCV}_a + \text{SCV}_s}{2}\right)$

Copyright 2005 Stephen C. Graves

Queuing Formula: Multiple Servers, No Queue

For M/G/k/k: Pr [# in system = n] =
$$\frac{(\lambda \tau)^n}{n!}$$
 and

$$\sum_{i=0}^k \frac{(\lambda \tau)^i}{i!}$$
Pr[# in system = k] = "loss probability"

For M/G/ ∞ , number in the system is Poisson with mean = $\lambda \tau$ and with variance = $\lambda \tau$

Copyright 2005 Stephen C. Graves

What's the wait for a nurse? M/G/k queue $\lambda \tau = 18$ k > 18 $\rho = \lambda \tau/k$

expected wait time in queue

$$\approx \frac{\rho}{1-\rho} \left(\frac{\tau}{k}\right) \left(\frac{SCV_a + SCV_s}{2}\right)$$

Copyright 2005 Stephen C. Graves

How many cots are needed?

Model as M/G/k/k or M/G/inf queue $\lambda \tau = 36$ E[# runners] = 36 V[# runners] = 36 $\sigma [\# runners] = 6$ 0.2/min Emergency Care $\tau = 15 \text{ min}$

 $\lambda \tau =$ workload per minute

What's the prob. need a back up?

Model as M/G/k/k $\lambda \tau = 3$

Loss probability = Pr [# in system = k] =
$$\frac{(\lambda \tau)^k}{k!}$$

 $\sum_{i=0}^k \frac{(\lambda \tau)^i}{i!}$

Copyright 2005 Stephen C. Graves

Services Rest rooms: $\lambda \tau = 390$ Phones: $\lambda \tau = 156$ Clothes: $\lambda \tau = 78$ Food: $\lambda \tau = 156$