\qquad
15.501/516 Accounting

Spring 2004

Professor S. Roychowdhury
Sloan School of Management Massachusetts Institute of Technology

April 5, 2004

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agenda - Long-Term Debt

- Extend our understanding of valuation methods
\qquad beyond simple present value calculations.
- Understand the terminology of long-term debt \qquad
- Bonds - coupon and zero-coupon bonds
- At Par vs. Discount vs. Premium
- Market interest rate versus coupon rate
- Mortgages - Interest plus Principal paid each period
- Practice bookkeeping for debt issuance, interest accruals, periodic payments, and debt retirement.
- Understand how long-term debt affects financial statements over time.

Bonds

- Bonds
- Periodic interest payments and face value due at maturity
- Face value (amount)
- (Principal) Amount due at maturity
- Interest payments
- Coupon rate times the face value of debt
- Coupon rate is the interest rate stated in the note. It's used to calculate interest payments
- Market rate of interest
- The rate of interest demanded in the market place given the risk characteristics of a bond
- Can be higher or lower than the coupon rate

Bonds

- Consider a loan with
- principal of $\$ 10,000$
- initiated on $1 / 1 / 01$
- The market interest rate is 6%
- Final payment is to be made at the end of the third year, i.e., on 12/31/03.
- What annual payments are required under the following three alternatives?
- Annual interest payment at the end of each year and repayment of principal at the end of the third year (typical bond terms).
- A single payment (of principal and interest) at the end of year 3 (Zero-Coupon bond).
- Three equal payments at the end of each year (mortgage / new car loan terms).

Bonds - alternative payment streams

\qquad

	Coupon	Zero	Mortgage
End of Year 1	Int	0	Int + P
End of Year 2	Int	0	Int + P
End of Year 3	Int + P	Int + P	Int + P

\qquad

Accounting for a Bond issued at par

 Coupon Rate 6\% = Market Rate 6\%- At the time of the bond issue

- Dr Cash	10,000
- Cr Bond Payable	10,000

- Periodically thereafter
- Cash interest payments = Face Value x Coupon rate
- Bond payable at the present value of cash flows, i.e., the present value of interest and principal
- Interest expense = Bond payable x market interest rate
- Difference between interest expense and cash interest payment is added to Bond Payable
- At maturity
- Pay interest and entire principal balance

Accounting for a Bond issued at par Coupon Rate 6\% = Market Rate 6\%

- What is the present value of the bond?
- Payment stream
- Three annual coupon payments of $\$ 600$ each
- Principal payment of $\$ 10,000$ at the end of three years
- Present value
- PV of ordinary annuity, $n=3, r=6 \%$, Table 4
- $\$ 600 \times 2.67301=\$ 1603.81$
- PV of \$10,000, $n=3, r=6 \%$, Table 2
- $\$ 10,000 \times 0.83962=\$ 8396.20$
- $\mathrm{PV}=\$ 1603.81+\$ 8396.20=\$ 10,000$

Accounting for a Bond issued at par

Coupon Rate 6\% = Market Rate 6\%

- End of year 1
- Interest expense $=\$ 10,000 \times 6 \%$
- Coupon payment $=\$ 100,000 \times 6 \%$
- Dr Interest expense 600 Cr Cash
End of year 2
- Dr Interest expense 600
- Cr Cash

End of year 3

- Dr Interest expense

600

- Cr Cash

10,000 600

- Dr Bond Payable
- Cr Cash

10,000

Accounting for a ZeroCoupon Bond

- The zero-coupon bond pays $\$ 10,000$ at the end of three years.
- How much will it sell for? That is, how much cash proceed will the firm receive at the time of issuing the zero-coupon bond?
- What is the present value of such a bond at the time of issue?
- PV of $\$ 10,000, n=3, r=6 \%$, Table 2
- $\$ 10,000 \times 0.83962=\$ 8396.20$

Accounting for a ZeroCoupon Bond

- At the time of the bond issue
- Dr Cash 8,396.20
- Dr Discount on bonds payable 1,603.80
- Cr Bond Payable 10,000.00
- Balance sheet presentation
- Bond payable, gross \$10,000.00
- Less Discount (\$1603.80)
- Net Bond Payable $\$ 8396.20$

Zero-Coupon Bond

- Over time, the discount is reduced so that at maturity the net bond payable equals the face value of the bonds, $\$ 10,000$
- Periodically after issuance
- Cash interest payments = 0
- Interest expense = Bond payable x market interest rate
- Difference between interest expense and cash interest payment reduces Discount Account
- At maturity
- Pay interest and entire principal balance
- Remove Bonds Payable

Zero-Coupon Bond

- End of year 1
- Interest expense $=\$ 8,396.2 \times 6 \%=503.77$
- No cash interest payment, so add the interest to Bond Payable
- Dr Interest expense 503.77
Cr Discount 503.77
- Balance in Discount Account $=\$(1603.80-503.77)$

$$
=\$ 1100.03
$$

- Net Bonds Payable $=\$ 8396.20+503.77=\$ 8899.97$
- OR
- Net Bonds Payable $=\$ 10,000-(1100.03)=\$ 8899.97$

Zero-Coupon Bond

- End of year 2
- Interest expense $=\$ 8,899.97 \times 6 \%=534.00$
- No cash interest payment, so add the interest to Bond Payable
- Dr Interest expense 534.00
- Cr Discount 534.00
- Balance in Discount Account $=\$(1100.03-534.00)$ = \$ 566.03
- Net Bonds Payable $=\$ 8899.97+534.00=\$ 9433.97$
- OR
- Net Bonds Payable $=\$ 10,000-566.03=\$ 9433.97$

Zero-Coupon Bond

- End of year 3
- Interest expense $=\$ 9433.97 \times 6 \%=566.03$
- No cash interest payment, so add the interest to Bond Payable
- Dr Interest expense 566.03
- Cr Discount
566.03
- Balance in Discount Account $=0$
- Net Bonds Payable $=\$ 9433.97+566.04=\$ 10,000$
- OR
- Net Bonds Payable $=\$ 10,000-0=\$ 10,000$
- Pay off the bond at maturity
- Dr Bond Payable

10,000

- Cr Cash

Accounting for a Mortgage

- In a mortgage, you make equal payments each period until maturity.
- Each payment represents interest and some principal repayment.
- PV of an ordinary annuity of three payments = \$10,000
- $N=3, r=6 \%$, Table 4
- $\$ 10,000=$ PVOA ($n=3, r=6 \%$) \times Mortgage Payment
- Mortgage Payment $=\$ 10,000 / 2.67301=\$ 3741.10$

Accounting for a Bond issued at par

 Coupon Rate 6\% = Market Rate 6\%- At the time of the mortgage
- Dr Cash 10,000
- Cr Mortgage Payable 10,000
- Periodically thereafter until maturity
- Cash mortgage payment equals
- Interest expense = Outstanding mortgage balance \times Market interest rate
- The excess of mortgage payment over interest expense reduces the Mortgage Principal balance

Accounting for a Mortgage

Signing	$\begin{aligned} & \text { Cash } \\ & 10,000 \end{aligned}$		Mortgage $10,000$			
	Cash	=	Mortgage	+	Ret Earnings	
2001	$(3,741)$	=	$(3,141)$		(600)	
EB01			6,859			
2002	$(3,741)$	=	$(3,329)$		(412)	
EB02			3,530			
2003	$(3,741)$	=	$(3,530)$		(211)	
EB03			0			19

Bond issued at a Discount

Coupon rate 6\% < Market rate at issuance 8\%

- Cash flows to the bondholder
- Interest payments = Coupon rate \times Face Value $=\$ 600$
- Principal at maturity $=\$ 10,000$
- Proceeds from bond issue
- PV of cash flows discounted at the MARKET interest rate of 8%
- PVOA $(n=3, r=8 \%) \times \$ 600=2.57710 \times 600=\$ 1546.26$
- PV of $(10,000, n=3, r=8 \%)=0.79383 \times 10,000=\$ 7938.30$
- Total = \$9484.56
- Bond Payable \$10,000.00
- Less Discount (515.44)
- Net Bond Payable \$09,484.56

Bond issued at a Discount

\qquad
Coupon rate 6\% < Market rate at issuance 8\%

- At the end of first year
- Interest expense
- Net Bond Payable x 8%
- $\$ 9484.56 \times 8 \%=\$ 758.77$
- Dr Interest expense 758.77
- Cr Cash 600.00
- Cr Discount on Bond Payable 158.77
- Net Bond Payable $=\$ 9484.56+158.77=\$ 9643.33$
\qquad
\qquad
\qquad
\qquad
\qquad

Bond issued at a Discount

Coupon rate 6\% < Market rate at issuance 8\%

Issue	Cash		= [Bond Payable	- Discount =]	NBP9,485	
	9,485		[10,000	-515 =]		
	Cash		[Bond Payable -	- Discount =]	NBP +	RE
2001	(600)	=		159	9,643	(759)
2002	(600)	=		171	9,815	(771)
2003	(600)	$=$		185	10,000	(785)
	$(10,000)$				$(10,000)$	

Bond issued at a Premium

Coupon rate $6 \%>$ Market rate at issuance 4\%

Issue	Cash		[Bond Payable	+ Prem		NBP	
	10,555		[10,000	+ 555	=]	10,555	
	Cash		[Bond Payable + Premium =]			NBP +	RE
2001	(600)	=		(178)		10,377	(422)
2002	(600)	=		(185)		10,192	(415)
2003	(600)	$=$		(192)		10,000	(408)
	$(10,000)$					$(10,000)$	

Bonds - disclosures

- Balance sheet
- Current portion of L-T debt in current liabilities
- Long-term debt
- Income Statement
- Interest expense
- Indirect SCF
- Operations - interest accruals not yet paid, amortization of discount/premium
- Investing - purchase / sale of available for sale debt
- Financing - proceeds, repayment + supplemental disclosure of cash paid for interest
- Notes
- Details on all of the above

Bond Disclosures

(8) Lonq-Term Debt

A summary of long-term debt, including current maturities, as of December 31 is as follows (interest rates are as of December 31, 1997):
(In Millions) 19971996
Secured notes, 6.13% to 8.90%,
averaging 7.16\%, due through 2014 \$ 1,295 \$ 819
Debentures, 9.00% to 11.21%, averaging
Convertible debentures, 7.758, due 2010
Promissory notes, 6.338 to 11.008
Special facility bonds, 5.625\%, due 2034

Less: Unamortized discount on debt
Current maturities

Courtesy of U.S. Securities and Exchange Commission. Used with permission.

Does the Balance Sheet Represent the Market Value of Debt?

Shoney's, 1999 Subordinated zero-coupon debentures, due April 2004	1999	1998
$122,520,712$	$\$ 112,580,014$	

What is the effective interest rate Shoney has used?
Zero coupon bond value $=$ value $_{t-1} \times(1+r)$
$=r \quad=122,520,712 / 112,580,014-1$
What is the market interest rate of the debt? The Wall Street Journal reported in 1999 that Shoney's debt was selling for 210 per thousand, with 5 years until maturity.
$\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}_{0} \times(1+\mathrm{r})^{\mathrm{n}}$
$1000=210 \times(1+r) 5 \quad=>\quad(1000 / 210) 1 / 5-1=36.6 \%$
Shoney's Statement of Cash Flows:
Effect of Discount Amortization

\qquad
Courtesy of U.S. Securities and Exchange Commission. Used with permission.

Early Retirement of Debt

You repurchase Zero-Coupon bonds (Face Value $=\$ 11,910$) in the open market at the start of 2002 (2 years to maturity) when the market rate is 5%. The market rate of interest at time of issue was 6%.
What is the market price of the bonds at that time?
$P V_{0} \quad=F V_{n} /(1+r)^{n}$
$P V_{0}=11,910 /(1.05)^{2}=10,803$
What is the effect on the BSE and financial statements? Cash $(A)=$ Bond Principal - Discount + RE

The gain or loss on early retirement of debt is reported as an extraordinary item on the income statement. \qquad

Bonds - debt covenants (TCBY)

Borrower will at all times maintain

- a ratio of Current Assets to Current Liabilities ... that is greater than 2.0..
- a Profitability ratio greater than 1.5 ...[defined as] the ratio of Net Income for the immediately preceding period of 12 calendar months to Current Maturities of Long Tern Debt ..
- a Fixed Coverage Ratio greater than $1.0 \ldots$ [defined as] the ratio of Net Income ... plus noncash Charges to Current Maturities of Long Term Debt ... plus cash dividends ... plus Replacement CapEx of the Borrower
- [Borrower will not] sell, lease, transfer, or otherwise dispose of any assets ... except for the sale of inventory ... and disposition of obsolete equipment ...[to] repurchase the stock of TCBY
- [Borrower agrees it will not take on new loans if] the aggregate amount of all such loans ... would exceed 25% of the consolidated Tangible Net Worth of the Borrower.

