Facility Location and Distribution System Planning

Thomas L. Magnanti

Today's Agenda

Why study facility location? Issues to be modeled Basic models Fixed charge problems Core uncapacitated and capacitated facility location models Large-scale application (Hunt-Wesson Foods)

Logistics Industry

U.S. logistics industry: \$900 billion - almost double the size of the high-tech industry: > 10 percent of the U.S. gross domestic product 11 per cent of Singapore's GDP with a growth of 9 per cent in year 2000 Singapore Logistics Enhancement & **Applications Programme (LEAP) 2001 Global logistics: \$3.43 trillion** 1998, U.S. trucking industry revenues just under \$200 billion 7.7 million trucks carried over 1 trillion ton miles of freight

Singapore Retail 21 Plan

Basic Issue

Where to locate and how to size facilities? How to meet customer demands from the facilities? Which facility (facilities) serve each customer? How much customer demand is met by each facility?

Facilities might be warehouses, retail outlets, wireless bay stations, communication concentrators

Some Elements of Cost & Service

Transportation Costs Vehicles, Drivers, Fuel Warehousing Facility Construction/Rental, Handling Costs, Inventory Customer Service Service Time, Single Sourcing

System Trade-offs

Effect of More Facilities

System Trade-offs

Effect of "Individualized" Service (e.g., Direct Shipments)

Nature of Costs

Fixed Costs Facility construction/rental Vehicle purchases & rentals Personnel (drivers, managers) Fixed overhead Variable Costs Inventory, handling, fuel

Optimization Applications

Hunt-Wesson Foods saves over \$1 million per year Restructuring North America operations, Proctor and Gamble reduces plants by 20%, saving \$200 million/year Many, many others (e.g., supplying parts to plants)

Facility Location Challenge

Modeling Issue

How do we model "lumpiness" of the costs (e.g., fixed costs)? How do we model logical conditions (e.g., choice of warehouse locations)?

Modeling Fixed Costs

Incur fixed cost F if either x > 0 or z > 0Suppose $x + z \leq 3/2$ (demand limitation)ModelMinimizeFy + other termssubject toy = 1 if either x > 0 or z > 0

Three Models (LP Relaxations)

 Model 1
 Formula

 x + z < 3/2 Formula

 x < 1, z < 1 Conservation

 $x + z < 2y \leftarrow$ Weak

 x > 0, z > 0 Model

Forcing Constraints

Veak Strong -

Model 3 x + z < 3y/2 x < 1, z < 1 x < y, z < y x > 0, z > 0 0 < y < 1 Model 2 x + z < 3/2 x < 1, z < 1 → x < y, z < y x > 0, z > 0 0 < y < 1

Geometry (Improved Model)

Geometry (Strong Model)

Core (Uncapacitated) Facility Location

Minimize Fixed + Routing Costs Subject to **Meet customer** demand from facilities Assign customer only to open facility

Parameters:

Core Facility Location Model

Demand d_i for each customer i Fixed cost F_j for each facility location j Cost c_{ij} of routing all customer i demand to facility j = per unit cost times demand d_i

Decisions: Core Facility Location Model

Where do we locate facilities? y_j = 1 if we locate facility at location j Fraction of service that customer i receives from facility j (x_{ii})

Network Representation 3 Customers, 4 Facilities

Facility Location Costs

 $C_{11}X_{11} + C_{12}X_{12}$ Routing + $C_{13}X_{13}$ + $C_{14}X_{14}$ -<u>-</u>-K₃₁ + C₃₂X₃₂ + C₃₄X₃₄ Fixed + F_1y_1 + F_2y_2 + F_3y_3 + F_4y_4 COS

Constraints: Tabular Representation

C U s t m e ľ S

 $\begin{array}{l} x_{11} \leq y_{1}, \, x_{12} \leq y_{2}, \, x_{13} \leq y_{3}, \, x_{14} \leq y_{4} \\ x_{21} \leq y_{1}, \, x_{22} \leq y_{2}, \, x_{23} \leq y_{3}, \, x_{24} \leq y_{4} \\ x_{31} \leq y_{1}, \, x_{32} \leq y_{2}, \, x_{33} \leq y_{3}, \, x_{34} \leq y_{4} \end{array}$

Model (Uncapacitated Facilities)

Minimize $\Sigma_{ij}\Sigma_{j} c_{ij}X_{ij} + \Sigma_{j} F_{j}y_{j}$ Subject to

 $\begin{array}{ll} x_{ij} & = 1 & \text{for all customers i} \\ x_{ij} & \leq y_j & \text{for all customers i} \\ x_{ij} & \geq 0 & \text{for all customers i} \\ x_{ij} & = 0 & \text{or 1} & \text{for all facilities j} \\ y_i & = 0 & \text{or 1} & \text{for all facilities j} \end{array}$

Modeling Variations

Open at most three of facilities 1, 6 and 8-11

 $\begin{array}{l} y_1 + y_6 + y_8 + y_9 + y_{10} + y_{11} \leq 3 \\ \mbox{Assign each customer to a single facility} \\ x_{11} \mbox{ integer, } x_{12} \mbox{ integer, etc.} \end{array}$

Modeling Variations

Open a facility at location 3 only if we open one at location 7

y₃ ≤ **y**₇

Note: Power of using integer variables to model logical restrictions

Modeling Enhancements

Multiple products Facility capacities and operating ranges (min and max throughput if open) **Multi-layered distribution networks Service restrictions** Single sourcing **Timing of deliveries** Inventory positioning and control

Alternate Model (Uncapacitated Facilities)

Minimize $\Sigma_{i}\Sigma_{j} c_{ij}x_{ij} + \Sigma_{j} F_{j}y_{j}$ Subject to

 $\begin{array}{l} \Sigma_j \; \mathbf{x}_{ij} = \mathbf{1} \\ \Sigma_i \; \mathbf{x}_{ij} \leq \mathbf{n} \mathbf{y}_j \\ \mathbf{x}_{ij} \geq \mathbf{0} \\ \mathbf{y}_j = \mathbf{0} \text{ or } \mathbf{1} \end{array}$

for all customers i for all facilities j for all pairs i,j for all facilities j

Alternate Model (Uncapacitated Facilities)

Minimize $\Sigma_{i}\Sigma_{j} c_{ij}x_{ij} + \Sigma_{j} F_{j}y_{j}$ Subject to

$$\begin{split} \Sigma_j & \mathbf{x}_{ij} \equiv \mathbf{d}_i \\ \Sigma_i & \mathbf{x}_{ij} \leq (\Sigma_i \ \mathbf{d}_i) \mathbf{y}_j \\ & \mathbf{x}_{ij} \geq \mathbf{0} \\ \mathbf{y}_j \equiv \mathbf{0} \text{ or } \mathbf{1} \end{split}$$

for all customers i for all facilities j for all pairs i,j for all facilities j

Model (Capacitated Facilities)

Minimize $\Sigma_i \Sigma_j c_{ij} X_{ij} + \Sigma_j F_j Y_j$ Subject to for all customers i for all i, j pairs for all facilities j for all i, j pairs for all facilities j **or 1**

Tabular Representation

Network Representation

Solution Approaches

Heuristics

Add, drop, and/or exchange Linear programming relaxation Bounding (Lagrangian relaxation) Optimization methods Large-scale mixed integer programming Benders decomposition Lagrangian relaxation (e.g., dualize capacity constraints to give uncapacitated facility location subproblem

Hunt-Wesson Foods

Ingredients

Multiple products Multiple plants Many DCs, many customers Site selection and sizing Customer service levels Complex costs

Data Preprocessing

49 product-plant combinations
 (from 14x17 = 238)
682 DC-customer zone
 combinations
 (from 45x121 = 5,445 possibilities)

Data Preprocessing

23,513 product-plant-DC-customer combinations (from 49x682 = 33,418 possibilities)

System Requirements

Data easy to acquire Inexpensive/quick to run Easily updated User-oriented Flexible (what if capabilities) Measurable benefits

Indices

p = products
i = plants
j = distribution centers
k = customer zones

Decision Variables

 x_{pijk} = amount of product p shipped from plant i to customer zone k through DC j z_j = 1 if DC j open y_{jk} = 1 if DC is sole source of customer zone k

Constraints

+ Configuration Constraints on y,z

Objective Σ_{pijk} C_{pijk} X_{pijk} Transportation Cost **Fixed DC Cost** $+ \Sigma_{i} f_{i} Z_{i}$ + $\Sigma_{j} v_{j} \Sigma_{pk} D_{pk} y_{jk}$ Variable DC Cost

Model Development

Aggregation of Data Preselection of Certain Decisions in Large Applications

Choice of Models

Power of Integer Programming

Fixed costs Bounding # of facilities Precedence constraints Mandatory service constraints Sole sourcing Service timing

Stages in Model Development

Probationary analysis Analyzing results Sensitivity analysis What if analysis Priority analysis

Today's Lessons

Facility location and distribution important in practice Geometry of fixed cost modeling Model choice is important in problem solving

Strong vs. weak forcing constraints Optimization models are able to solve large-scale practical problems