Facility Location and Distribution System Planning

Thomas L. Magnanti

Today's Agenda

Why study facility location?
Issues to be modeled
Basic models
Fixed charge problems
Core uncapacitated and capacitated facility location models
Large-scale application (HuntWesson Foods)

Logistics Industry

U.S. logistics industry: $\$ 900$ billion - almost double the size of the high-tech industry: >10 percent of the U.S. gross domestic product 11 per cent of Singapore's GDP with a growth of 9 per cent in year 2000
Singapore Logistics Enhancement \&
Applications Programme (LEAP) 2001
Global logistics: $\$ 3.43$ trillion
1998, U.S. trucking industry revenues just under $\$ 200$ billion
7.7 million trucks carried over 1 trillion ton miles of freight

Singapore Retail 21 Plan

RE-INVENT THE RETAIL SECTOR

- E-enable the business
- Harness innovative retail technologies
- Adopt new retail concepts and business models

RAISE RETAILING STANDARDS

- Raise the professionalism of the retailing workforce
- Raise the image of the retain sector
- Promote service differentiation
- Attract and retain staff

To be a World-class Centre of Retail Excellence

MANAGE THE RESTRUCTURING OF HDB RETAIL SUB-SECTOR

- Reduce redundant retail space
- Provide an enhanced package of assistance programmes
- Transform the mindset of HDB retailers
- Embark on cost management
- Identify regulatory measures

Basic Issue

Where to locate and how to size facilities?
How to meet customer demands from the facilities?

Which facility (facilities) serve each customer?
How much customer demand is met by each facility?
Facilities might be warehouses, retail outlets, wireless bay stations, communication concentrators

Some Elements of Cost \& Service

Transportation Costs
Vehicles, Drivers, Fuel
Warehousing
Facility Construction/Rental, Handling
Costs, Inventory
Customer Service Service Time, Single Sourcing

System Trade-offs

Transportation Fixed cosis

Effect of More Facilities

System Trade-offs

Costs Service

Effect of "Individualized" Service (e.g., Direct Shipments)

Nature of Costs

Fixed Costs
Facility construction/rental
Vehicle purchases \& rentals
Personnel (drivers, managers)
Fixed overhead
Variable Costs
Inventory, handling, fuel

Optimization Applications

Hunt-Wesson Foods saves over \$1 million per year
Restructuring North America operations, Proctor and Gamble reduces plants by 20\%, saving \$200 million/year Many, many others (e.g., supplying parts to plants)

Facility Location Challenge

Modeling Issue

How do we model
"lumpiness" of the
costs (e.g., fixed
costs)?
How do we model
logical conditions
(e.g., choice of
warehouse locations)?

Modeling Fixed Costs

Incur fixed cost F if either $x>0$ or $z>0$ Suppose $x+z \leq 3 / 2$ (demand limitation)

Model

Minimize Fy + other terms subject to $y=1$ if either $x>0$ or $z>0$

Three Models (LP Relaxations)

Model 1

$x+z<3 / 2$
$x<1, z<1$
$x+z<2 y \longleftarrow$ Weak Strong $\longrightarrow x$
$x>0, z>0$
$0<y<1$

Forcing
Constraints $\quad x<1, z<1$
Weak Strong $\longrightarrow x<y, z<y$
$x>0, z>0$
$0<y<1$
Model 2
$x+z<3 / 2$

$$
\begin{gathered}
\text { Model } 3 \\
x+z<3 y / 2 \\
x<1, z<1 \\
x<y, z<y \\
x>0, z>0 \\
0<y<1
\end{gathered}
$$

Geometry (Weak Model)

Geometry (Improved Model)

Geometry (Strong Model)

Exact representation!
$x<y, z<y$ intersects at $y=1$

Core (Uncapacitated) Facility Location

Minimize Fixed + Routing Costs
Subject to
Meet customer demand from facilities Assign customer only to open facility

Parameters:

Core Facility Location Model

Demand d_{i} for each customer \mathbf{i} Fixed cost F_{j} for each facility location j
Cost c_{ij} of routing all customer i demand to facility $\mathrm{J}=$ per unit cost times demand d_{i}

Decisions: Core Facility Location Model

Where do we locate facilities?
$y_{j}=1$ if we locate facility at location j Fraction of service that customer i receives from facility $\mathrm{j}\left(\mathrm{X}_{\mathrm{ij}}\right)$

Network Representation 3 Customers, 4 Facilities

Customers Facilities

Facility Location Costs

$C_{11} X_{11}+C_{12} X_{12}$
$+C_{13} X_{13}+C_{14} X_{14}$
せ. 」
$+c_{31} X_{31}+C_{32} X_{32}$
$+\mathrm{C}_{33} X_{33}+\mathrm{C}_{34} \mathrm{X}_{34}$
$+F_{1} y_{1}+F_{2} y_{2}+F_{3} y_{3}+F_{4} y_{4}$
Fixed Costs

Constraints: Tabular Representation

Facilities (Locations)

u
s
0

x_{11}	x_{12}	x_{13}	x_{14}
x_{21}	x_{22}	x_{23}	x_{24}
x_{21}	$=1$		
x_{31}	x_{32}	x_{33}	x_{34}

m
e $\quad x_{11} \leq y_{1}, x_{12} \leq y_{2}, x_{13} \leq y_{3}, x_{14} \leq y_{4}$
$r \quad x_{21} \leq y_{1}, x_{22} \leq y_{2}, x_{23} \leq y_{3}, x_{24} \leq y_{4}$
5

$$
x_{31} \leq y_{1}, x_{32} \leq y_{2}, x_{33} \leq y_{3}, x_{34} \leq y_{4}
$$

Model

(Uncapacitated Facilities)

Minimize $\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{c}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}+\Sigma_{\mathrm{j}} \mathrm{F}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}$
Subject to

$$
\left.\begin{array}{ll}
\Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}=1 & \text { for all customers i } \\
x_{\mathrm{ij}} \leq y_{\mathrm{j}} \\
x_{\mathrm{ij}} \geq 0
\end{array}\right\} \quad \text { for all customers i } \begin{aligned}
& \text { and facilities } \mathrm{j} \\
& \mathrm{y}_{\mathrm{j}}=0 \text { or } 1 \text { for all facilities } j
\end{aligned}
$$

Modeling Variations

Open at most three of facilities 1, 6 and 8-11

$$
y_{1}+y_{6}+y_{8}+y_{9}+y_{10}+y_{11} \leq 3
$$

Assign each customer to a single facility x_{11} integer, x_{12} integer, etc.

Modeling Variations

Open a facility at location 3 only if we open one at location 7

$$
y_{3} \leq y_{7}
$$

Note: Power of using integer variables to mode] logical restrictions

Modeling Enhancements

Multiple products
Facility capacities and operating ranges (min and max throughput if open)
Multi-layered distribution networks Service restrictions

Single sourcing
Timing of deliveries
Inventory positioning and control

Alternate Model (Uncapacitated Facilities)

Minimize $\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{c}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}+\Sigma_{\mathrm{j}} \mathrm{F}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}$
Subject to
$\Sigma_{\mathrm{j}} \mathrm{X}_{\mathrm{ij}}=1$
for all customers i
$\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}} \leq \mathrm{n} \mathrm{y}_{\mathrm{j}}$ $\mathrm{X}_{\mathrm{ij}} \geq 0$
for all facilities j
for all pairs i,j
$y_{j}=0$ or $1 \quad$ for all facilities j

Alternate ModeJ (Uncapacitated Facilities)

Minimize $\Sigma_{i} \Sigma_{\mathrm{j}} \mathrm{c}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}+\Sigma_{\mathrm{j}} F_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}$
Subject to
$\Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{i}} \quad$ for all customers i
$\Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{ij}} \leq\left(\Sigma_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}\right) \mathbf{y}_{\mathrm{j}}$ for all facilities j $x_{i j} \geq 0 \quad$ for all pairs i,j
$y_{j}=0$ or $1 \quad$ for all facilities j

Model (Capacitated Facilities)

Minimize $\Sigma_{i} \Sigma_{j} c_{i j} x_{i j}+\Sigma_{j} F_{j} y_{j}$ Subject to \mathbf{K}_{j}
$\Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{i}} \quad /$ for all customers i $x_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}} \quad$ for all i, j pairs
$\Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{ij}} \leq \mathrm{CA} P_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}$ for all facilities j $\mathrm{x}_{\mathrm{ij}} \geq 0$ $y_{j}=0$ or 1 for all facilities j

Tabular Representation

C

Locations

U	X_{11}	X_{12}	X_{13}	X_{14}	$\begin{aligned} & =d_{1} \\ & =d_{2} \\ & =d_{3} \end{aligned}$
S	x_{21}	x_{22}	X_{23}	X_{24}	
\bigcirc	X_{31}	X_{32}	X_{33}	X_{34}	
m	\leq	\leq	\leq	\leq	

$\begin{array}{lllll}\mathrm{K}_{1} \mathrm{y}_{1} & \mathrm{~K}_{2} \mathrm{y}_{2} & \mathrm{~K}_{3} \mathrm{y}_{3} & \mathrm{~K}_{4} \mathrm{y}_{4}\end{array}$

Network Representation

customers Facilities

Solution Approaches

\square Heuristics
Add, drop, and/or exchange Linear programming relaxation Bounding (Lagrangian relaxation)
Optimization methods
Large-scale mixed integer programming
Benders decomposition
Lagrangian relaxation (e.g., dualize capacity constraints to give uncapacitated facility location subproblem

Ingredients

Multiple products
Multiple plants
Many DCs, many customers
Site selection and sizing
Customer service levels
Complex costs

45 DC Choices

 121 Customer Zones 17 Product Groups p
Data Preprocessing

49 product-plant combinations (from $14 \times 17=238$)
682 DC-customer zone combinations
(from $45 \times 121=5,445$ possibilities)

Data Preprocessing

23,513
product-plant-DC-customer combinations
(from $49 \times 682=33,418$ possibilities)

System Requirements

Data easy to acquire
Inexpensive/quick to run
Easily updated
User-oriented
Flexible (what if capabilities)
Measurable benefits

Indices

$p=$ products
$i=$ plants
$j=$ distribution centers
$k=$ customer zones

Plant
DC Customer Zone

Decision Variables

$x_{p i j k}=$ amount of product p shipped from plant i to customer zone k through DC j
$z_{j}=1$ if DC j open
$y_{j k}=1$ if DC is sole source of customer zone k

Constraints

$$
\begin{aligned}
& \Sigma_{\mathrm{jk}} \mathbf{x}_{\mathrm{pijk}} \leq \mathrm{S}_{\mathrm{pi}} \\
& \Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{pjk}}=\mathrm{D}_{\mathrm{pk}} \mathrm{y}_{\mathrm{jk}} \\
& \Sigma_{\mathrm{j}} \mathrm{y}_{\mathrm{jk}}=1 \\
& \underline{V}_{j} z_{j} \leq \Sigma_{\mathrm{pk}} \mathrm{D}_{\mathrm{pk}} \mathbf{y}_{\mathrm{jk}} \leq \overline{\mathbf{V}}_{\mathrm{j}} \boldsymbol{z}_{\mathrm{j}} \\
& \mathrm{X}_{\mathrm{pjk}} \geq 0 \\
& z_{j}, y_{j k}=0 \text { or } 1
\end{aligned}
$$

+ Configuration Constraints on y, z

Objective

$\Sigma_{\mathrm{pjjk}} \mathrm{C}_{\mathrm{pjjk}} \mathrm{X}_{\mathrm{pjk}}$ Transportation Cost
$+\Sigma_{\mathrm{j}} \mathrm{f}_{\mathrm{f}}^{\mathrm{z}} \mathrm{j} \quad$ Fixed DC Cost
$+\Sigma_{\mathrm{j}} \mathrm{V}_{\mathrm{j}} \Sigma_{\mathrm{pk}} \mathrm{D}_{\mathrm{pk}} \mathrm{y}_{\mathrm{jk}}$ Variable DC Cost

Model Development

Aggregation of Data
Preselection of Certain Decisions in Large Applications

Choice of Models

Power of Integer Programming

Fixed costs
Bounding \# of facilities
Precedence constraints
Mandatory service constraints
Sole sourcing
Service timing

Stages in Model Development

Probationary analysis
Analyzing results
Sensitivity analysis
What if analysis
Priority analysis

Today's Lessons

Facility location and distribution important in practice
Geometry of fixed cost modeling Model choice is important in problem solving

Strong vs. weak forcing constraints
Optimization models are able to solve large-scale practical problems

