
Simple Routines for Optimization

Robert M. Freund

with assistance from Brian W. Anthony

February 12, 2004

c©2004 Massachusetts Institute of Technology.

1

1	 Outline

•	 A Bisection Line-Search Algorithm for 1-Dimensional Optimization

•	 The Conditional-Gradient Method for Constrained Optimization (Frank-
Wolfe Method)

•	 Subgradient Optimization

•	 Application of Subgradient Optimization to the Lagrange Dual Prob
-
lem

2	 A Bisection Line-Search Algorithm for 1-Dimensional
Optimization

Consider the optimization problem:

P	 : minimizex f(x)

ns.t. x ∈ � .

Let us suppose that f(x) is a differentiable convex function. In a typical
algorithm for solving P we have a current iterate value x̄ and we choose a

¯direction d̄ by some suitable means. The direction d is usually chosen to be
a descent direction, defined by the following property:

x + εd̄) < f(¯f(¯ x) for all ε > 0 and sufficiently small .

We then typically also perform the 1-dimensional line-search optimization:

α := arg min f(¯¯ x + αd̄) .
α

Let
h(α) := f(x̄ + αd̄),

whereby h(α) is a convex function in the scalar variable α, and our problem
is to solve for

ᾱ := arg min h(α).
α

2

�

�

We therefore seek a value ᾱ for which

h (ᾱ) = 0.

It is elementary to show that

x + αd)T ¯ h (α) = ∇f (¯ ¯ d.

Property: If d ̄ is a descent direction at x̄, then h
�
(0) < 0.

Because h(α) is a convex function of α, we also have:

Property: h
�
(α) is a monotone increasing function of α.

Figure 1 shows an example of convex function of two variables to be
optimized. Figure 2 shows the function h(α) obtained by restricting the
function of Figure 1 to the line shown in that figure. Note from Figure 2 that
h(α) is convex. Therefore its first derivative h

�
(α) will be a monotonically

increasing function. This is shown in Figure 3.

Because h
�
(α) is a monotonically increasing function, we can approxi-

α, the point that satisfies h
�
(¯mately compute ¯ α) = 0, by a suitable bisection

α that h
�
(ˆmethod. Suppose that we know a value ˆ α) > 0. Since h

�
(0) < 0

αα) > 0, the mid-value ˜and h
�
(ˆ α = 0+ ˆ is a suitable test-point. Note the 2

following:

• If h
�
(α̃) = 0, we are done.

• If h
�
(˜ α in the interval (0, ˜α) > 0, we can now bracket ¯ α).

α) < 0, we can now bracket ¯ α, ˆ• If h
�
(˜ α in the interval (̃ α).

This leads to the following bisection algorithm for minimizing h(α) = f (x̄ +
¯ αd) by solving the equation h

�
(α) ≈ 0.

Step 0. Set k = 0. Set αl := 0 and αu := α̂.

α = αu+αl and compute h
�
(˜Step k. Set ˜ α).2

• If h
�
(˜ α. Set k ← k + 1. α) > 0, re-set αu := ˜

• If h
�
(˜ α. Set k ← k + 1. α) < 0, re-set αl := ˜

3

0
0.5

1
1.5

2
2.5

3 −2
0

2
4

6
8

10−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

x
1

x
2

f(x
1
,x

2
)

Figure 1: A convex function to be optimized.

4

0

−50

−40

−30

−20

−10

h(α)

−60
−0.4 −0.2 0 0.2 0.4 0.6 0.8

α

Figure 2: The 1-dimensional function h(α).

5

1

−1.5

−1

−0.5

0

0.5

1

h′(α)

−2
−0.4 −0.2 0 0.2 0.4 0.6 0.8

α

Figure 3: The function h
�
(α) is monotonically increasing.

6

1

ε

⌈ ()⌉

�

•	 If h
�
(α̃) = 0, stop.

Property: After every iteration of the bisection algorithm, the current
interval [αl, αu] must contain a point ¯ α) = 0. α such that h

�
(¯

Property: At the kth iteration of the bisection algorithm, the length of
the current interval [αl, αu] is

()k1
L = (α̂).

2

Property: A value of α such that |α − ᾱ| ≤ ε can be found in at most

α̂
log2

steps of the bisection algorithm.

ˆ	 α) > 02.1 Computing α for which h (ˆ

α for which h
�
(ˆSuppose that we do not have available a convenient value ˆ α) >

0. One way to proceed is to pick an initial “guess” of ˆ	 α).
α) > 0, then proceed to the bisection algorithm; if h

�
(ˆ

α and compute h
�
(ˆ

If h
�
(ˆ α) ≤ 0, then

re-set ˆ α and repeat the process. α ← 2ˆ

2.2 Stopping Criteria for the Bisection Algorithm

In practice, we need to run the bisection algorithm with a stopping criterion.
Some relevant stopping criteria are:

¯ •	 Stop after a fixed number of iterations. That is, stop when k = K,
¯where K is specified by the user.

•	 Stop when the interval becomes small. That is, stop when αu −αl ≤ ε,
where ε is specified by the user.

•	 Stop when |h
�
(˜ α)| ≤ ε,α)| becomes small. That is, stop when |h

�
(˜

where ε is specified by the user.

This third stopping criterion typically yields the best results in practice.

7

∑

2.3	 Modification of the Bisection Algorithm when the Do
main of f (x) is Restricted

The discussion and analysis of the bisection algorithm has presumed that
our optimization problem is

P : minimizex f (x)

ns.t. x ∈ � .

Given a point x̄ and a direction d̄, the line-search problem then is

LS : minimizeα h(α) := f (x̄ + αd̄)

s.t. α ∈ �.

nSuppose instead that the domain of definition of f (x) is an open set X ⊂ � .
Then our optimization problem is:

P : minimizex f (x)

s.t. x ∈ X,

and the line-search problem then is

LS : minimizeα h(α) := f (x̄ + αd̄)

¯¯s.t. x + αd ∈ X.

In this case, we must ensure that all iterate values of α in the bisection al-
x + αd ∈ X. As an example, consider the following problem: gorithm satisfy ¯ ¯

m
P : minimizex f (x) := − ln(bi − Aix)

i=1

s.t. b − Ax > 0.

8

∑

{
¯

}	 {
¯

}

∑

nHere the domain of f(x) is X = {x ∈ � | b − Ax > 0}. Given a point
x̄ ∈ X and a direction d̄, the line-search problem is:

x + αd̄) = −
m

ln(bi − Ai(¯LS : minimizeα h(α) := f(¯	 x + αd̄))
i=1

s.t. b − A(x̄ + αd̄) > 0.

Standard arithmetic manipulation can be used to establish that

b − A(¯	 ˇ αx + αd̄) > 0 if and only if α < α < ̂

where

bi − Aix	 bi − Aixˇ	 ˆα := − min ¯ and α := min ,¯ ¯	 ¯Aid<0 −Aid	 Aid>0 Aid

and the line-search problem then is:

m
LS : minimizeα h(α) := − ln(bi − Ai(x̄ + αd̄))

i=1

s.t. α < α < ̂ˇ α.

3	 The Conditional-Gradient Method for Constrained
Optimization (Frank-Wolfe Method)

We now consider the following optimization problem:

P :	 minimizex f(x)

s.t. x ∈ C .

We assume that f(x) is a convex function, and that C is a convex set.
Herein we describe the conditional-gradient method for solving P , also called
the Frank-Wolfe method. This method is one of the cornerstones of opti-
mization, and was one of the first successful algorithms used to solve non-
linear optimization problems. It is based on the premise that the set C

9

is well-suited for linear optimization. That means that either C is itself a
system of linear inequalities C = {x | Ax ≤ b}, or more generally that the
problem:

TLOc : minimizex c x

s.t. x ∈ C

is easy to solve for any given objective function vector c.

This being the case, suppose that we have a given iterate value x̄ ∈ C.
Let us linearize the function f (x) at x = x̄. This linearization is:

z1(x) := f (¯ x)T (x − ¯x) + ∇f (¯ x) ,

which is the first-order Taylor expansion of f (·) at x. Since we can easily ¯
do linear optimization on C, let us solve:

LP : minimizex z1(x) = f (¯ x)T (x − ¯x) + ∇f (¯ x)

s.t. x ∈ C ,

which simplifies to:

LP : minimizex ∇f (¯
x)T x

s.t. x ∈ C .

∗Let x denote the optimal solution to this problem. Then since C is
∗a convex set, the line segment joining x and x is also in C, and we can ¯

perform a line-search of f (x) over this segment. That is, we solve:

x + α(x ∗ − ¯LS : minimizeα f (¯ x))

s.t. 0 ≤ α ≤ 1 .

Let ¯ x:α denote the solution to this line-search problem. We re-set ¯

10

¯ x + ¯ x)x ← ¯ α(x ∗ − ¯

and repeat this process.

The formal description of this method, called the conditional gradient
method or the Frank-Wolfe method, is given below:

Step 0: Initialization. Start with a feasible solution x0 ∈ C. Set
k = 0. Set LB ← −∞.

kStep 1: Update upper bound. Set UB ← f (xk). Set x̄ ← x .

Step 2: Compute next iterate.

–	 Solve the problem

z̄ = minx f (¯ x)T (x − ¯x) + ∇f (¯	 x)

s.t. x ∈ C ,

and let x ∗ denote the solution.

– Solve the line-search problem:

∗ − ¯minimizeα f (x̄ + α(x x))

s.t. 0 ≤ α ≤ 1 ,

and let ᾱ denote the solution.
k+1 ← ¯– Set x x + ¯ x)α(x ∗ − ¯

Step 3: Update Lower Bound. Set LB ← max{LB, z̄}.
Step 4: Check Stopping Criteria. If |UB − LB| ≤ ε, stop. Oth-
erwise, set k ← k + 1 and go to Step 1.

11

3.1	 Upper and Lower Bounds in the Frank-Wolfe Method,
and Convergence

•	 The upper bound values UB are simply the objective function values
of the iterates f(xk) for k = 0, This is a monotonically decreasing
sequence because the line-search guarantees that each iterate is an
improvement over the previous iterate.

•	 The lower bound values LB result from the convexity of f(x) and the
gradient inequality for convex functions:

f(x) ≥ f(¯ x)T (x − ¯x) + ∇f(¯ x) for any x ∈ C .

Therefore

x) + ∇f(¯ x) = ̄min f(x) ≥ min f(¯ x)T (x − ¯ z ,
x∈C x∈C

and so the optimal objective function value of P is bounded below by
z̄.

We also have the following convergence theorem for the Frank-Wolfe
method:
Property: Suppose that C is a bounded set, and that there exists a constant
L for which

‖∇f(x) −∇f(y)‖ ≤ L‖x − y‖

for all x, y ∈ C. Then there exists a constant Ω > 0 for which the following
is true:

Ω
f(x k) − min f(x) ≤ .

x∈C k

3.2	 Illustration of the Frank-Wolfe Method

Consider the following instance of P :

P : minimize f(x)

s.t. x ∈ C ,

where

12

()

() ()

4 2f(x) = f(x1, x2) = −32x1 + x1 − 8x2 + x2

and

C = {(x1, x2) | x1 − x2 ≤ 1, 2.2x1 + x2 ≤ 7, x1 ≥ 0, x2 ≥ 0} .

Notice that the gradient of f(x1, x2) is given by the formula:

3

∇f(x1, x2) =
4x1 − 32

.
2x2 − 8

Suppose that x = ¯k x = (0.5, 3.0) is the current iterate of the Frank-
Wolfe method, and the current lower bound is LB = −100.0. We compute

x) = f(0.5, 3.0) = −30.9375 and we compute the gradient of f(x) at ̄f(¯	 x:

3 −31.5 ∇f(0.5, 3.0) =
4x1 − 32

= −2.0
.

2x2 − 8

We then create and solve the following linear optimization problem:

LP : z̄ = minx1,x2 −30.9375 − 31.5(x1 − 0.5) − 2.0(x2 − 3.0)

s.t.	 x1 − x2 ≤ 1
2.2x1 + x2 ≤ 7
x1 ≥ 0
x2 ≥ 0 .

The optimal solution of this problem is:

∗ ∗	 ∗ x = (x1, x2) = (2.5, 1.5) ,

and the optimal objective function value is:

z̄ = −50.6875 .

Now we perform a line-search of the 1-dimensional function

∗	 ∗f(¯ x)) = −32(¯ x1)) + (¯ x1))4x + α(x ∗ − ¯ x1 + α(x1 − ¯ x1 + α(x1 − ¯
∗	 ∗−8(¯ x2)) + (¯ x2))2x2 + α(x2 − ¯ x2 + α(x2 − ¯

13

¯over α ∈ [0, 1]. This function attains its minimum at α = 0.7165 and we
therefore update as follows:

k+1 x+¯ x) = (0.5, 3.0)+0.7165((2.5, 1.5)−(0.5, 3.0)) = (1.9329, 1.9253)x ← ¯ α(x ∗ −¯

and

LB ← max{LB, z̄} = max{−100, −50.6875} = −50.6875 .

The new upper bound is

UB = f(x k+1) = f(1.9329, 1.9253) = −59.5901 .

This is illustrated in Figure 4.

4 Subgradient Optimization

4.1 Definition

Suppose that f(x) is a convex function. If f(x) is differentiable, we have
the gradient inequality:

f(x) ≥ f(¯ x)T (x − ¯x) + ∇f(¯ x) for any x ∈ X ,

where typically we think of X = �n . This inequality is illustrated in Figure
5.

There are many important convex functions that are not differentiable.
The notion of the gradient generalizes to the concept of a subgradient of
a convex function. A vector g ∈ �n is called subgradient of the convex
function f(x) at x = x̄ if the following inequality is satisfied:

x) + g T (x − ¯f(x) ≥ f(¯ x) for all x ∈ X .

This definition is illustrated in Figure 6.

14

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5

6

7

8

x
1

x
2

xk

x*
xk+1

x^

Figure 4: Illustration of an iteration of the Frank-Wolfe method.

15

5000

−2000

−1000

0

1000

2000

3000

4000

f(u)

−3000

−100 −80 −60 −40 −20 0 20 40 60 80 100

u

Figure 5: The gradient and the gradient inequality for a differentiable convex
function.

16

8000

−100 −80 −60 −40 −20 0 20 40 60 80 100
−6000

−4000

−2000

0

2000

4000

6000

f(u)

u

Figure 6: Subgradients and the subgradient inequality for a non-
differentiable convex function.

17

4.2 Properties of Subgradients

Suppose that f(x) is a convex function. For each x, let ∂f(x) denote the set
of all subgradients of f(x) at x. We call ∂f(x) the “subdifferential of f(x).”

•	 If f(x) is convex, then ∂f(x) is always a nonempty convex set.

•	 If f(x) is differentiable, then ∂f(x) = {∇f(x)}.
•	 Subgradients plays the same role for convex functions as the gradient

does for differentiable functions. Consider the following optimization
problem:

min f(x)
x

–	 If f(x) is convex and differentiable, then x is a global minimum
if and only if ∇f(x) = 0.

–	 If f(x) is convex and non-differentiable, then x is a global mini-
mum if and only if 0 ∈ ∂f(x).

4.3 Subgradients for Concave Functions

If f(x) is a concave function, then g is a subgradient of f(x) at x = x̄ if:

x) + g T (x − ¯f(x) ≤ f(¯ x) for all x ∈ X .

This is illustrated in Figure 7. Figure 8 shows a piecewise-linear concave
function. Figure 9 illustrates the subdifferential for a concave function.

4.4 Computing Subgradients

Subgradients play a very important role in non-differentiable optimization.
In most algorithms, we assume that we have a subroutine that receives as
input a value x, and has output g where g is a subgradient of f(x).

18

3000

−4000

−3000

−2000

−1000

0

1000

2000

f(u)

−5000
−100 −80 −60 −40 −20 0 20 40 60 80 100

u

Figure 7: The subgradient of a concave function.

19

500

−100

0

100

200

300

400

f(u)

−200
0 20 40 60 80 100 120 140 160 180 200

u

Figure 8: A piecewise linear concave function.

20

200

−100

−50

0

50

100

150

f(u)

−150
0 20 40 60 80 100 120 140 160 180 200

u

Figure 9: The subdifferential of a concave function.

21

∑

5	 The Subgradient Method for Maximizing a Con
cave Function

Suppose that Z(u) is a concave function, and that we seek to solve:

P : maximizeu Z(u)

ns.t. u ∈ � .

u) satisfies d �If Z(u) is differentiable and d := ∇Z(¯ = 0, then d is an ascent
direction at ū, namely

Z(¯ u) for all ε > 0 and sufficiently small .u + εd) > Z(¯

This is illustrated in Figure 10. However, if Z(u) is not differentiable and
g is a subgradient of Z(u) at u = ū, then g is not necessarily an ascent
direction. This is illustrated in Figure 11.

The following algorithm generalizes the steepest descent algorithm and
can be used to maximize a nondifferentiable concave function Z(u).

nStep 0: Initialization. Start with any point u1 ∈ � . Choose an
infinite sequence of positive stepsize values {αk }∞ . Set k = 1. k=1

Step 1: Compute a subgradient. Compute g ∈ ∂Z(uk).

Step 2: Compute stepsize. Compute stepsize αk from stepsize
series.

gStep 3: Update Iterate. Set uk+1 ← uk + αk ‖g‖ . Set k ← k + 1
and go to Step 1.

As it turns out, the viability of the subgradient algorithm depends crit-
ically on the sequence of stepsizes:

Property: Suppose that {αk }∞ satisfies:k=1

∞

lim	 αk = 0 and αk = ∞ .
k→∞

k=1

Then under very mild additional assumptions,

sup Z(u k) = max Z(u) .
k u∈�n

22

_ _

f(x) +

g

f(x)T(x-x)

Figure 10: The gradient is an ascent direction.

23

g

f(x) + gT(x-x)
_ _

Figure 11: A subgradient is not necessarily an ascent direction.

24

5.1 Example of Subgradient Algorithm in One Variable

Consider the following concave optimization problem:

P : maximizeu Z(u) = min{0.5u + 2,−1u + 20}

s.t. u ∈ � .

We illustrate various implementations of the subgradient method on this
simple problem.

•	 Choose u1 = 0 and αk = 0.
k
14 . Figure 12 illustrates the performance

of the subgradient algorithm for this stepsize sequence.

•	 Choose u1 = 0 and αk = 0.02. Figure 13 illustrates the performance
of the subgradient algorithm for this stepsize sequence.

•	 Choose u1 = 0 and αk = 0.
k
01 . Figure 14 illustrates the performance

of the subgradient algorithm for this stepsize sequence.

•	 Choose u1 = 0 and αk = 0.01 × (0.9)k . Figure 15 illustrates the
performance of the subgradient algorithm for this stepsize sequence.

5.2 Example of Subgradient Algorithm in Two Variables

Consider the following concave optimization problem:

P : maximizeu Z(u) = min{ 2.8571u1 − 0.2857u2 − 5.7143,
−u1 + u2 + 2,
−0.1290u1 − 1.0323u2 + 21.1613}

s.t. u ∈ �2 .

We illustrate the implementation of the subgradient method on this prob-
1lem with u1 = (0, 0) and αk = √ . Figure 16 shows the function level sets
k

and the path of iterations. Figure 17 shows the objective function values,
and Figure 18 shows values of the variables u = (u1, u2).

25

7.93

7.94

7.95

7.96

7.97

7.98

7.99

8

Z(u)

11.85 11.9 11.95 12 12.05 12.1

u

12.08
8.06

12.068.04

8.02
k
12.04

Z(uk) 8 u 12.02
7.98

12
7.96

11.987.94

11.96

0 5 10 15 0 5 10 15

7.92

k k

0.14Figure 12: Illustration of subgradient algorithm, αk = .k

26

7.93

7.94

7.95

7.96

7.97

7.98

7.99

8

Z(u)

11.85 11.9 11.95 12 12.05 12.1

u

8.08

8.06 12.04

8.04

k12.02

8.02Z(uk) u
12

8

11.98
7.98

11.96

0 5 10 15 0 5 10 15

7.96

k k

Figure 13: Illustration of subgradient algorithm, αk = 0.02 .

27

7.93

7.94

7.95

7.96

7.97

7.98

7.99

8

Z(u)

11.85 11.9 11.95 12 12.05 12.1

u

8.08

12.048.06

k12.028.04
Z(uk) u

128.02

11.988

11.96
7.98

0 5 10 15 0 5 10 15

k k

0.01Figure 14: Illustration of subgradient algorithm, αk = .k

28

7.93

7.94

7.95

7.96

7.97

7.98

7.99

8

Z(u)

11.85 11.9 11.95 12 12.05 12.1

u

8.08

12.048.06

k12.028.04
Z(uk) u

128.02

11.988

11.96
7.98

0 5 10 15 0 5 10 15

k k

Figure 15: Illustration of subgradient algorithm, αk = 0.01 × (0.9)k .

29

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

u
2

u
1

Figure 16: Illustration of the subgradient method in two variables: level sets
and path of iterations.

30

8

0 10 20 30 40 50 60
−2

−1

0

1

2

3

4

5

6

7

Z(uk)

k

Figure 17: Illustration of the subgradient method in two variables: objective
function values.

31

8

4

6

uk
1

2

0
0

10 20 30 40 50

k

14

2

4

6

8

10

12

u k
2

0
0 10 20 30 40 50

k

Figure 18: Illustration of the subgradient method in two variables: values
of variables u = (u1, u2).

32

60

60

6	 Solution of the Lagrangian Dual via Subgradient
Optimization

We start with the primal problem:

OP : minimumx f(x)

s.t.	 gi(x) ≤ 0, i = 1, . . . , m

x ∈ P,

We create the Lagrangian:

TL(x, u) := f(x) + u g(x)

and the dual function:

∗L (u) := minimumx∈P f(x) + uT g(x)

The dual problem then is:

∗D : maximumu L (u)

s.t. u ≥ 0

∗Recall that L (u) is a concave function. The premise of Lagrangian duality

∗ u) for any given ¯is that it is “easy” to compute L (¯ u. That is, it is easy to
compute an optimal solution x̄ of

∗L (¯	 uT g(x) = f(¯ uT g(¯u) := minimumx∈P f(x) + ̄ x) + ̄ x)

u, where ¯for any given ¯ x ∈ P . It turns out that computing subgradients of
∗L (u) is then also easy. We have:

33

Property: Suppose that ¯	 x ∈ P is an optimal solution u is given and that ¯
∗	 ∗of L (¯	 uT g(x). Then g := g(¯u) = min f(x) + ̄ 	 x) is a subgradient of L (u) at

x∈P
u = ū.

Proof: For any u ≥ 0 we have

L ∗(u) = min f(x) + u T g(x)
x∈P

T x) + u g(¯≤	 f(¯ x)
T x) + ̄ x) + (u − ¯ x)= f(¯ u g(¯ u)T g(¯

T= 	min f(x) + ̄ g(x) + g(¯ ¯u x)T (u − u)
x∈P
∗=	 L (¯ ¯u) + g T (u − u) .

∗Therefore g is a subgradient of L (u) at ̄u.
q.e.d.

The subgradient method for solving the Lagrangian dual can now be
stated:

nStep 0: Initialization. Start with any point u1 ∈ � , u1 ≥ 0.
Choose an infinite sequence of positive stepsize values {αk }∞ . Set k=1

k = 1.

Step 1: Compute a subgradient. Solve for an optimal solution x̄
∗of L (uk) = min f(x) + (uk)T g(x). Set g := g(x̄).

x∈P

Step 2: Compute stepsize. Compute stepsize αk from stepsize
series.

gStep 3: Update Iterate. Set uk+1 ← uk + αk ‖g‖ . If u �k+1 ≥ 0, re-set
k+1 u ← max{u k+1 , 0}, i = 1, . . . , m. Set k ← k + 1 and go to Step 1.i i

Note that we have modified Step 3 slightly in order to ensure that the
values of uk remain nonnegative.

6.1	 Illustration and Exercise using the Subgradient Method
for solving the Lagrangian Dual

Consider the primal problem:

34

{

∑

TOP : minimumx c x

s.t. Ax − b ≤ 0

nx ∈ {0, 1} .

nHere g(x) = Ax − b and P = {0, 1} = {x | xj = 0 or 1, j = 1, . . . , n}.
We create the Lagrangian:

TL(x, u) := c x + u T (Ax − b)

and the dual function:

∗L (u) := minimumx∈{0,1}n cT x + uT (Ax − b)

The dual problem then is:

∗D : maximumu L (u)

s.t. u ≥ 0

∗u ≥ 0. Notice that an optimal solution ¯ u) is: Now let us choose ¯ x of L (¯

¯
0 if (c − AT ū)j ≥ 0

xj =
1 if (c − AT ū)j ≤ 0

for j = 1, . . . , n. Also,

n []−∗ u) = c T ¯ u T (A¯ ¯ u)j .L (¯ x + ¯ x − b) = −u T b − (c − AT ¯
j=1

Also
g := g(¯ x − bx) = A¯

35

∗is a subgradient of L (ū).

Now consider the following data instance of this problem:
7 −8 12 −2 −2 −1

A = 6 5 , b = 45 −5 6 20

3 12 42

and
T c = (−4 1) .

Solve the Lagrange dual problem of this instance using the subgradient
algorithm starting at u1 = (1, 1, 1, 1, 1)T , with the following step-size choices:

• αk =

• αk =

1
k

1√

for k = 1,

for k = 1,

k

• αk = 0.2 × (0.75)k for k = 1,

• a stepsize rule of your own.

36

