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1 Outline 
Slide 1 

•	 Alternate View of Linear Programming 

•	 Facts about Symmetric and Semidefinite Matrices 

•	 SDP 

•	 SDP Duality 

•	 Examples of SDP 

–	 Combinatorial Optimization: MAXCUT 

–	 Convex Optimization: Quadratic Constraints, Eigenvalue Problems, log det(X) 
problems 

•	 Interior-Point Methods for SDP 

•	 Application: Truss Vibration Dynamics via SDP 

2 Linear Programming 

2.1 Alternative Perspective 
Slide 2 

LP : minimize c · x 

s.t. ai · x = bi, i  = 1, . . . , m  

n x ∈ �+. 

n
“c · x” means the linear function “ 

j=1 
cjxj” 

n�+ := {x ∈ �n | x ≥ 0} is the nonnegative orthant. 
n�+ is a convex cone.


K is convex cone if x, w ∈ K and α, β ≥ 0 ⇒ αx + βw ∈ K. Slide 3


LP : minimize c · x 

s.t. ai · x = bi, i  = 1, . . . , m  

n x ∈ �+. 

“Minimize the linear function c · x, subject to the condition that x must solve m given 
nequations ai · x = bi, i  = 1, . . . , m, and that x must lie in the convex cone K = �+.” 

2.1.1	 LP Dual Problem 
Slide 4 

m 

LD : maximize yibi 

i=1 
m 

s.t.	 yiai + s = c 
i=1 

n s ∈ �+. 
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For feasible solutions x of LP and (y, s) of  LD, the duality gap is simply 

m m 

c · x − yibi = c − yiai · x = s · x ≥ 0 
i=1 i=1 

Slide 5 
∗ ∗ ∗ If LP and LD are feasible, then there exists x and (y , s  ) feasible for the primal and 

dual, respectively, for which 

m 

∗ ∗ ∗ ∗ c · x − yi bi = s · x = 0  
i=1 

3 Facts about the Semidefinite Cone 
Slide 6 

If X is an n × n matrix, then X is a symmetric positive semidefinite (SPSD) matrix 
if X = XT and 

v T Xv ≥ 0 for any v ∈ �n 

If X is an n × n matrix, then X is a symmetric positive definite (SPD) matrix if 
X = XT and 

v T Xv > 0 for any v ∈ �n , v  �= 0  

4 Facts about the Semidefinite Cone 
Slide 7 

Sn denotes the set of symmetric n × n matrices 
Sn 

+ denotes the set of (SPSD) n × n matrices. 
Sn 

++ denotes the set of (SPD) n × n matrices. Let X, Y ∈ Sn . Slide 8 
“X � 0” denotes that X is SPSD 
“X � Y ” denotes that X − Y � 0 
“X � 0” to denote that X is SPD, etc. 
Remark: Sn = {X ∈ Sn | X � 0} is a convex cone. + 

5 Facts about Eigenvalues and Eigenvectors 
Slide 9 

If M is a square n × n matrix, then λ is an eigenvalue of M with corresponding 
eigenvector q if 

Mq  = λq and q �= 0  . 

Let λ1, λ2, . . . , λn enumerate the eigenvalues of M . 

6 Facts about Eigenvalues and Eigenvectors 
Slide 10 

2 nThe corresponding eigenvectors q 1 , q  , . . . , q  of M can be chosen so that they are 
orthonormal, namely ( 

i 
)T ( ) ( 

i 
)T ( ) 

jq q = 0  for  i �= j, and q q i = 1  

2 



[ ] 

[ ] 

∏ 

( ) 

Define: 
2 nQ := q 1 q · · ·  q 

Then Q is an orthonormal matrix: 

QT	 −1Q = I,  equivalently QT = Q

Slide 11 
λ1, λ2, . . . , λn are the eigenvalues of M 
1 2 n q , q  , . . . , q  are the corresponding orthonormal eigenvectors of M 

2 nQ := q 1 q · · ·  q 

QT Q = I,  equivalently QT = Q−1 

Define D:  
0 


λ1 0 
0 λ2   

D :=  .  . 
. . 

0 λn 

Property: M = QDQT .	 Slide 12 
The decomposition of M into M = QDQT is called its eigendecomposition. 

7 Facts about Symmetric Matrices 
Slide 13 

•	 If X ∈ Sn, then  X = QDQT for some orthonormal matrix Q and some diagonal

matrix D. The  columns  of  Q form a set of n orthogonal eigenvectors of X,

whose eigenvalues are the corresponding entries of the diagonal matrix D.


•	 X � 0 if and only if X = QDQT where the eigenvalues (i.e., the diagonal entries

of D) are all nonnegative.


•	 X � 0 if and only if X = QDQT where the eigenvalues (i.e., the diagonal entries

of D) are all positive.


Slide 14 

•	 If M is symmetric, then 
n 

det(M) =  λj 

j=1 

Slide 15 

•	 Consider the matrix M defined as follows: 

P v 
M = T v d

, 

where P � 0, v is a vector, and d is a scalar. Then M � 0 if and only if

d − v T P−1
v ≥ 0. 

•	 For a given column vector a, the  matrix  X := aa T is SPSD, i.e., X = aa T � 0. 

•	 If M � 0, then there is a matrix N for which M = NT N . To see this, simply

take N = D QT .


3 
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8 SDP  

8.1 Semidefinite Programming 

8.1.1 Think about X 
Slide 16 

Let X ∈ Sn . Think of X as: 

• a matrix  

• an array of n 2 components of the form (x11, . . . , xnn ) 

• an object (a vector) in the space Sn . 

All three different equivalent ways of looking at X will be useful. 

8.1.2 Linear Function of X 
Slide 17 

Let X ∈ Sn . What will a linear function of X look like?

If C(X) is a linear function of X, then  C(X) can be written as C • X, where 


n n 

C • X := CijXij . 
i=1 j=1 

There is no loss of generality in assuming that the matrix C is also symmetric. 

8.1.3 Definition of SDP 
Slide 18 

SDP : minimize C • X 

s.t. Ai • X = bi , i  = 1, . . . , m,  

X � 0, 

“X � 0” is the same as “X ∈ Sn ” + 

The data for SDP consists of the symmetric matrix C (which is the data for the 
objective function) and the m symmetric matrices A1, . . . , Am, and  the  m−vector b, 
which form the m linear equations. 

8.1.4 Example 
Slide 19 ( ) 1 2 31 0 1  0 2 8  

11
A1 = 0 3 7  , A2 = 2 6 0  , b = , and C = 2 9 0  ,

19
1 7 5  8 0 4  3 0 7  

The variable X will be the 3 × 3 symmetric matrix: 

x11 x12 x13 

X = x21 x22 x23 , 
x31 x32 x33 

4 
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SDP :	 minimize x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33 
s.t.	 x11 + 0x12 + 2x13 + 3x22 + 14x23 + 5x33 =  11  

0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 =  19  

x11 x12 x13 
X = x21 x22 x23 � 0. 

x31 x32 x33 
Slide 20 

SDP :	 minimize x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33 

s.t.	 x11 + 0x12 + 2x13 + 3x22 + 14x23 + 5x33 =  11  
0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 =  19  

x11 x12 x13 

X = x21 x22 x23 � 0. 
x31 x32 x33 

It may be helpful to think of “X � 0” as stating that each of the n eigenvalues of X must be 
nonnegative. 

8.1.5	 LP ⊂ SDP 
Slide 21 

LP : minimize c · x 
s.t.	 ai · x = bi, i  = 1, . . . , m  

nx ∈ � .+

Define:  	   ai1 0 . . .  0 c1 0 . . .  0 
0 ai2 . . .  0 0 c2 . . .  0 

. . . .Ai = 	 . .  , i = 1, . . . , m,  and C =  . .  . 
. .	 . . . . . . 
. . . . . . . . 
0 0 . . .  ain 0 0 . . .  cn 

SDP :	 minimize C • X 
s.t.	 Ai • X = bi , i  = 1, . . . , m,  

Xij = 0, i  = 1, . . . , n,  j = i + 1, . . . , n,    x1 0 . . .  0 
0 x2 . . .  0 

X =  . . . .  � 0, 
. . . . 
. . . . 
0 0 . . .  xn 

9 SDP Duality 
Slide 22 

m 

SDD : maximize yibi 

i=1 

m 

s.t.	 yiAi + S = C 
i=1 

S � 0. 

Notice 
m 

S = C −	 yiAi � 0 
i=1 

5 



∑ 

∑ 

( ) ( ) ( ) 

( ) ( ) ( ) 

( ) ( ) ( ) 

( ) 

∑ 

∑ 

10 SDP Duality 
Slide 23 

and so equivalently: 
m 

SDD : maximize yibi 

i=1 

m 

s.t. C − yiAi � 0 
i=1 

10.1 Example 
Slide 24 

1 0 1  0 2 8  ( ) 1 2 3  
11 

A1 = 0 3 7  , A2 = 2 6 0  , b  = , and C = 2 9 0  ,
19 

1 7 5  8 0 4  3 0 7  

SDD : maximize 11y1 + 19y2 

1 0 1  0 2 8  1 2 3  
s.t. y1 0 3 7  + y2 2 6 0  + S = 2 9 0  

1 7 5  8 0 4  3 0 7  

S � 0 
Slide 25 

SDD : maximize 11y1 + 19y2 

1 0 1  0 2 8  1 2 3  
s.t. y1 0 3 7  + y2 2 6 0  + S = 2 9 0  

1 7 5  8 0 4  3 0 7  

S � 0 

is  the same as:  
SDD : maximize 11y1 + 19y2 

s.t. 
1 − 1y1 − 0y2 2 − 0y1 − 2y2 3 − 1y1 − 8y2 

2 − 0y1 − 2y2 9 − 3y1 − 6y2 0 − 7y1 − 0y2 � 0. 
3 − 1y1 − 8y2 0 − 7y1 − 0y2 7 − 5y1 − 4y2 

10.2 Weak Duality 
Slide 26 

Weak Duality Theorem: Given a feasible solution X of SDP and a feasible solution 
(y, S) of  SDD, the duality gap is 

m 

C • X − yibi = S • X ≥ 0 . 
i=1 

If 
m 

C • X − yibi = 0  , 
i=1 

then X and (y, S) are each optimal solutions to SDP and SDD, respectively, and 
furthermore, SX = 0.  

6 
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10.3 Strong Duality 
Slide 27 ∗ ∗ Strong Duality Theorem: Let z and zD denote the optimal objective function 

values of SDP and SDD, respectively. Suppose that there exists a feasible solution 
ˆ ˆ y, Ŝ) of  SDD 

P 

X of SDP such that X � 0, and that there exists a feasible solution (ˆ
such that Ŝ � 0. Then both SDP and SDD attain their optimal values, and 

∗ ∗ zP = zD . 

11 Some Important Weaknesses of SDP 
Slide 28 

•	 There may be a finite or infinite duality gap. 

•	 The primal and/or dual may or may not attain their optima. 

•	 Both programs will attain their common optimal value if both programs have

feasible solutions that are SPD.


•	 There is no finite algorithm for solving SDP . 

•	 There is a simplex algorithm, but it is not a finite algorithm. There is no direct

analog of a “basic feasible solution” for SDP .


12 SDP in Combinatorial Optimization 

12.0.1 The MAX CUT Problem 
Slide 29 

G is an undirected graph with nodes N = {1,  . . . , n} and edge set E.

Let wij = wji be  the weight on  edge (i, j), for (i, j) ∈ E.

We assume that wij ≥ 0 for all (i, j) ∈ E.

The MAX CUT problem is to determine a subset S of the nodes N for which the


¯sum of the weights of the edges that cross from S to its complement S is maximized 
(S̄ := N \ S). 

12.0.2 Formulations 
Slide 30 

The MAX CUT problem is to determine a subset S of the nodes N for which the sum 
¯of the weights wij of the edges that cross from S to its complement S is maximized


(S̄ := N \ S).

Let xj = 1  for  j ∈ S and xj = −1 for  j ∈ S̄.


n n 
1MAXCUT  : maximizex 4 

wij(1 − xixj)

i=1 j=1


s.t. xj ∈ {−1, 1}, j  = 1,  . . . , n.  
Slide 31 

n n 

MAXCUT  : maximizex 
1 wij(1 − xixj)4 

i=1 j=1 

s.t. xj ∈ {−1, 1}, j  = 1,  . . . , n.  

7 
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Let 
Y = xx T . 

Then 
Yij = xixj i = 1, . . . , n,  j  = 1, . . . , n.  

Slide 32 
Also let W be the matrix whose (i, j)th element is wij for i = 1, . . . , n  and j = 1, . . . , n. 
Then 

n n 
1MAXCUT  : maximizeY,x 4 

wij − W • Y

i=1 j=1


s.t.	 xj ∈ {−1, 1}, j  = 1, . . . , n  

Y = xx T . 
Slide 33 

n n 
1MAXCUT  : maximizeY,x 4 

wij − W • Y

i=1 j=1


s.t.	 xj ∈ {−1, 1}, j  = 1, . . . , n  

Y = xx T . 
Slide 34 

The first set of constraints are equivalent to Yjj = 1, j  = 1, . . . , n. 

n n 
1MAXCUT  : maximizeY,x 4 

wij − W • Y 
i=1 j=1 

s.t.	 Yjj = 1, j  = 1, . . . , n  

Y = xx T . 
Slide 35 

n n 
1MAXCUT  : maximizeY,x 4 

wij − W • Y 
i=1 j=1 

s.t.	 Yjj = 1, j  = 1, . . . , n  

Y = xx T . 

Notice that the matrix Y = xx T is a rank-1 SPSD matrix. Slide 36 
We relax this condition by removing the rank-1 restriction: 

n n 

RELAX : maximizeY 
1 wij − W • Y
4 

i=1 j=1 

s.t.	 Yjj = 1, j  = 1, . . . , n  

Y � 0. 

It is therefore easy to see that RELAX provides an upper bound on MAXCUT, i.e., 

8 
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MAXCUT  ≤ RELAX. 

Slide 37 

n n 

RELAX : maximizeY 
1 wij − W • Y
4 

i=1 j=1 

s.t. Yjj = 1, j  = 1, . . . , n  

Y � 0. 

As it turns out, one can also prove without too much effort that: 

0.87856 RELAX ≤ MAXCUT  ≤ RELAX. 

Slide 38 
This is an impressive result, in that it states that the value of the semidefinite 
relaxation is guaranteed to be no more than 12.2% higher than the value of 
NP -hard problem MAX CUT. 

13 SDP for Convex QCQP 
Slide 39 

A convex quadratically constrained quadratic program (QCQP) is a problem of the 
form: 

TQCQP : minimize x T Q0x + q0 x + c0


x

Ts.t. x Qix + qi

T x + ci ≤ 0 , i  = 1, . . . , m,  

where the Q0 � 0 and  Qi � 0, i  = 1, . . . , m.  This is the  same  as:  

QCQP : minimize θ

x, θ


T Ts.t. x Q0x + q0 x + c0 − θ ≤ 0 

T x Qix + qi
T x + ci ≤ 0 , i  = 1, . . . , m.  

Slide 40 

QCQP : minimize θ

x, θ


T Ts.t. x Q0x + q0 x + c0 − θ ≤ 0 

T x Qix + qi
T x + ci ≤ 0 , i  = 1, . . . , m.  

Factor each Qi into 
Qi = Mi

T Mi 

and note the equivalence: 

I Mix T 

x T Mi
T − ci − qi

T x 
� 0 ⇐⇒ x Qix + qi

T x + ci ≤ 0. 

Slide 41 
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QCQP : minimize θ

x, θ


Ts.t. xT Q0x + q0 x + c0 − θ ≤ 0 

TxT Qix + qi x + ci ≤ 0 , i  = 1, . . . , m.  

Re-write QCQP as: 

QCQP : minimize θ 
x, θ 

I M0x 
s.t. TxT MT −c0 − q0 x + θ 

� 0 
0 

I Mix 
xT MT −ci − qi

T x 
� 0 , i  = 1, . . . , m.  

i 

14 SDP for SOCP 

14.1 Second-Order Cone Optimization 
Slide 42 

Second-order cone optimization: 

SOCP : minx c T x 

s.t. Ax = b 

‖Qix + di‖ ≤  gi
T x + hi , i  = 1, . . . , k  .  

√ 
Recall ‖v‖ := vT v Slide 43 

SOCP : minx cT x 

s.t. Ax = b 

‖Qix + di‖ ≤  gi
T x + hi , i = 1, . . . , k  .  

Property: ( ) x + h)I (Qx + d)‖Qx + d‖ ≤  g T x + h ⇐⇒ 
(gT 

T(Qx + d)T g x + h 
� 0 . 

This property is a direct consequence of the fact that 

M = 
P 
T 

v � 0 ⇐⇒ d − v T P−1 v ≥ 0 . 
v d 

Slide 44 

SOCP : minx cT x 

s.t. Ax = b 

‖Qix + di‖ ≤  gi
T x + hi , i = 1, . . . , k  .  

Re-write as: 

10 
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SDPSOCP : minx cT x 

s.t. Ax = b 

(gi
T x + hi)I (Qix + di) 

(Qix + di)
T gi

T x + hi 
� 0 , i = 1, . . . , k  .  

15 Eigenvalue Optimization 
Slide 45 

We are given symmetric matrices B and Ai, i  = 1,  . . . , k  
Choose weights w1, . . . ,  wk to create a new matrix S: 

k 

S := B − wiAi . 
i=1 

There might be restrictions on the weights Gw ≤ d.

The typical goal is for S is to have some nice property such as:


• λmin(S) is maximized 

• λmax(S) is minimized 

• λmax(S) − λmin(S) is minimized 

15.1 Some	Useful Relationships 
Slide 46 

Property: M � tI if and only if λmin(M) ≥ t. 

Proof: M = QDQT . Define 

TR = M − tI = QDQT − tI = Q(D − tI)Q .


M � tI ⇐⇒ R � 0 ⇐⇒ D − tI � 0 ⇐⇒ λmin(M) ≥ t . 


q.e.d.


Property: M � tI if and only if λmax(M) ≤ t.


15.2 Design Problem 
Slide 47 

Consider the design problem: 

EOP : minimize λmax(S) − λmin(S) 
w, S 

k 

s.t.	 S = B − wiAi 

i=1 

Gw ≤ d .  

Slide 48 
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EOP : minimize λmax(S) − λmin(S) 
w, S 

k 

s.t.	 S = B − wiAi 

i=1 

Gw ≤ d .  

This is equivalent to: 

EOP :	 minimize µ − λ

w, S, µ, λ


k 

s.t.	 S = B − wiAi 

i=1 

Gw ≤ d 
λI 	 S 	 µI. 

16	 The Logarithmic Barrier Function for SPD 

Matrices 
Slide 49 

Let X � 0, equivalently X ∈ Sn 
+. 

X will have n nonnegative eigenvalues, say λ1(X), . . . , λn(X) ≥ 0 (possibly counting 
multiplicities). 

∂Sn = {X ∈ Sn | λj(X) ≥ 0, j  = 1, . . . , n,  + 

and λj(X) = 0  for  some  j ∈ {1, . . . , n}}. 
Slide 50 

∂Sn = {X ∈ Sn | λj(X) ≥ 0, j  = 1, . . . , n,  + 

and λj(X) = 0  for  some  j ∈ {1, . . . , n}}. 
A natural barrier function is: 

n	 n 

B(X) :=  − ln(λi(X)) = − ln λi(X) = − ln(det(X)). 
j=1	 j=1 

This function is called the log-determinant function or the logarithmic barrier function 
for the semidefinite cone. Slide 51 

n	 n 

B(X) :=  − ln(λi(X)) = − ln λi(X) = − ln(det(X)). 
j=1	 j=1 

¯Quadratic Taylor expansion at X = X: 

1 ¯α2 X− 1
2 D X̄− 1

2 • X̄− 1
2 D X̄− 1

2 . ¯ ¯X + αD) ≈ B(X) +  αX−1¯B( • D + 
2 

B(X) has the same remarkable properties in the context of interior-point methods for 
n

SDP as the barrier function − 
j=1 

ln(xj) does in the context of linear optimization. 

12 
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17 The SDP Analytic Center Problem 
Slide 52 

Given a system: 

m 

yiAi 	 C ,  

i=1 

y, S) of:  the analytic center is the solution (ˆ ˆ

n 

(ACP:) maximizey,S λi(S) 
i=1 

m 
s.t.	

i=1 
yiAi + S = C 

S � 0 . 
Slide 53 

n 

(ACP:) maximizey,S λi(S) 
i=1 

m 
s.t.	

i=1 
yiAi + S = C 

S � 0 . 

This is the same as: 

(ACP:) minimizey,S − ln det(S) 

m 
s.t.	

i=1 
yiAi + S = C 

S � 0 . 
Slide 54 

(ACP:) minimizey,S − ln det(S) 

m 
s.t. 

i=1 
yiAi + S = C 

S � 0 . 

Let (ŷ, Ŝ) be the analytic center. 
There are easy-to-construct ellipsoids EIN and EOUT, both centered at ŷ and where EOUT is 
a scaled version of EIN with scale factor n, with the property that: 

EIN ⊂ P ⊂ EOUT 

Slide 55 
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x ̂  
P 

Eout 

Ein 

18 Minimum Volume Circumscription 
Slide 56 

R � 0 and  z ∈ �n define an ellipsoid in �n: 

ER,z := {y | (y − z)T R(y − z) ≤ 1}. 
The volume of  ER,z is proportional to det(R−1). Slide 57 
Given k points c1, . . . , ck, we would like to find an ellipsoid circumscribing 
c1, . . . , ck that has minimum volume: 

14 
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MCP  : minimize vol (ER,z ) 
R, z 
s.t. ci ∈ ER,z , i  = 1, . . . , k  

which is equivalent to: 

MCP  : minimize − ln(det(R)) 
R, z 
s.t. (ci − z)T R(ci − z) ≤ 1, i  = 1, . . . , k  

R � 0 
Slide 59 

MCP  : minimize − ln(det(R)) 
R, z 
s.t. (ci − z)T R(ci − z) ≤ 1, i  = 1, . . . , k  

R � 0 

Factor R = M2 where M � 0 (that is, M is a square root of R): 

MCP  : minimize − ln(det(M2)) 
M, z 
s.t. (ci − z)T MT M(ci − z) ≤ 1, i  = 1, . . . , k,  

M � 0 
Slide 60 
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MCP  : minimize − ln(det(M2))

M, z

s.t.	 (ci − z)T MT M(ci − z) ≤ 1, i  = 1, . . . , k,  

M � 0. 

Notice the equivalence: 

Mci − Mz  
(Mci − Mz)T 1 

� 0 ⇐⇒ (ci − z)T MT M(ci − z) ≤ 1 

Re-write MCP : 

MCP  : minimize − 2 ln(det(M))

M, z


I  Mci − Mz  
s.t. 

(Mci − Mz)T 1 
� 0, i  = 1, . . . , k,  

M � 0. 
Slide 61 

MCP  : minimize − 2 ln(det(M))

M, z


I  Mci − Mz  
s.t. 

(Mci − Mz)T 1 
� 0, i  = 1, . . . , k,  

M � 0. 

Substitute y = Mz: 

MCP  : minimize − 2 ln(det(M))

M, y


I  Mci − y
s.t. 

(Mci − y)T 1 
� 0, i  = 1, . . . , k,  

M � 0. 
Slide 62 

MCP  : minimize −2 ln(det(M))

M, y


I  Mci − y
s.t. 

(Mci − y)T 1 
� 0, i  = 1, . . . , k,  

M � 0. 

This problem is very easy to solve.

Recover the original solution R, z by computing:


R = M2 and z = M−1 y. 

19	 SDP in Control Theory 
Slide 63 

A variety of control and system problems can be cast and solved as instances of 
SDP . This topic is beyond the scope of this lecturer’s expertise. 
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20	 Interior-p oint Methods for SDP 

20.1 Primal and Dual SDP 
Slide 64 

SDP :	 minimize C • X 
s.t.	 Ai • X = bi , i  = 1, .  . .  ,  m,  

X � 0 

and 
m 

SDD : maximize yibi 

i=1 
m 

s.t.	 yiAi + S = C 
i=1 

S � 0 . 

If X and (y, S) are feasible for the primal and the dual, the duality gap is: 

m 

C • X − yibi = S • X ≥ 0 . 

i=1 

Also, 
S • X = 0  ⇐⇒ SX = 0  . 

Slide 65 

n	 n 

B(X) =  − ln(λi(X)) = − ln λi(X) = − ln(det(X)) . 

j=1	 j=1 

Consider: 

BSDP (µ) : minimize C • X − µ ln(det(X)) 

s.t. Ai • X = bi , i  = 1, .  . .  ,  m,  

X � 0. 

Let fµ(X) denote the objective function of BSDP (µ). Then: 

−∇ fµ(X) =  C − µX−1 

Slide 66 

BSDP (µ) : minimize C • X − µ ln(det(X)) 

s.t. Ai • X = bi , i  = 1, .  . .  ,  m,  

X � 0. 

∇ fµ(X) =  C − µX−1 

Karush-Kuhn-Tucker conditions for BSDP (µ) are:   
Ai • X = bi , i  = 1, .  . .  , m,       
X � 0,   m    C − µX−1 = yiAi. 

i=1 
Slide 67 
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Ai • X = bi , i  = 1,  . . . ,  m,    
X � 0, 

m   C − µX−1 = 
∑ 

yiAi. 
i=1 

Define 
S = µX−1 , 

which implies 
XS = µI , 

and rewrite KKT conditions as: Slide 68  
Ai • X = bi , i  = 1,  . . . , m,  X  � 0   m 

 
yiAi + S = C


i=1
 
XS = µI. 

Slide 69  
Ai • X = bi , i  = 1,  . . . , m,  X  � 0   m 

 
yiAi + S = C


i=1
 
XS = µI. 

If (X, y, S) is a solution of this system, then X is feasible for SDP , (y, S) is  feasible  
for SDD, and the resulting duality gap is 

n n n n 

S • X = SijXij = (SX)jj = (µI)jj = nµ. 
i=1 j=1 j=1 j=1 

Slide 70  
Ai • X = bi , i  = 1,  . . . , m,  X  � 0   m 

 
yiAi + S = C


i=1
 
XS = µI. 

If (X, y, S) is a solution of this system, then X is feasible for SDP , (y, S) is  feasible  
for SDD, the duality gap is 

S • X = nµ. 
Slide 71 

This suggests that we try solving BSDP (µ) for a variety of values of µ as µ → 0. 
Interior-point methods for SDP are very similar to those for linear optimization, in 
that they use Newton’s method to solve the KKT system as µ → 0. 

21 Website for SDP 
Slide 72 

A good website for semidefinite programming is: 

http://www-user.tu-chemnitz.de/ helmberg/semidef.html. 

18 



22 Optimization of Truss Vibration 

22.1 Motivation 
Slide 73 

•	 The design and analysis of trusses are found in a wide variety of scientific ap-

plications including engineering mechanics, structural engineering, MEMS, and

biomedical engineering.


•	 As finite approximations to solid structures, a truss is the fundamental concept

of Finite Element Analysis.


•	 The truss problem also arises quite obviously and naturally in the design of

scaffolding-based structures such as bridges, the Eiffel tower, and the skeletons

for tall buildings.


Slide 74 

•	 Using semidefinite programming (SDP) and the interior-point software SDPT3,

we will explore an elegant and powerful technique for optimizing truss vibration

dynamics.


•	 The problem we consider here is designing a truss such that the lowest frequency

¯
Ω at which it vibrates is above a given lower bound Ω. 

•	 November 7, 1940, Tacoma Narrows Bridge in Tacoma, Washington 

22.2 The Dynamics Model 
Slide 75 

Newton’s Second Law of Motion: 

F = m × a .  

u 
m 

k 

Slide 76 
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u 
m 

k 

If the mass is pulled down, the displacement u produces a force in the spring tending

to move the mass back to its equilibrium point (where u = 0). 

The displacement u causes an upward force k × u, where  k is the spring constant.

We obtain from F = m × a that:


−ku(t) =  mü(t) 
Slide 77 

Law of Motion: 
−ku(t) =  mü(t) 

Solution: ( ) 
k 

u(t) = sin  t 
m 

Frequency of vibration: 

k 
ω = . 

m 

22.2.1 Apply to Truss Structure 
Slide 78 

Law of Motion: 
−ku(t) =  mü(t) 

Solution: ( ) 
k 

u(t) = sin  t 
m 

k 
ω = 

m 

For truss structure, we need multidimensional analogs for k, u(t), and m. Slide 79 
A simple truss. 
Each bar has both stiffness and mass that depend on material properties and the bar’s 
cross-sectional area. 
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22.2.2 Analog of k 
Slide 80 

The spring constant k extends to the stiffness matrix of a truss.

We used G to denote the stiffness matrix.

Here we will use K.


TK = G = AB−1A

Each column of A, denoted as ai, is the projection of bar i onto the degrees of freedom 
of the nodes that bar i meets.  2   E1t1L1 0 L2 0 

 
E1t1 1     

B =  . .  , B−1 =  . .  . .. 
2L

0 m 0 Emtm 

Emtm L2 
m 

22.2.3 Analog of m 
Slide 81 

Instead of a single displacement scalar u(t), we have N degrees of freedom, and the 
vector 

u(t) = (u1(t), . . . , uN (t)) 

is the vector of displacements.

The mass m extends to a mass matrix M


22.2.4 Laws of Motion 
Slide 82 

−ku(t) =  mu(t)¨
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becomes: 
− Ku(t) =  Mü(t) 

Both K and M are SPD matrices, and are easily computed once the truss geometry 
and the nodal constraints are specified. Slide 83 

− Ku(t) =  Mü(t) 

The truss structure vibration involves sine functions with frequencies 
√ 

ωi =	 λi 

where 
λ1, . . . , λN 

are the eigenvalues of 
M−1K 

The threshold frequency Ω of the truss is the lowest frequency ωi, i  = 1, . . . , N , or  
equivalently, the square root of the smallest eigenvalue of M−1K. Slide 84 

− Ku(t) =  Mü(t) 

The threshold frequency Ω of the truss is the square root of the smallest eigenvalue of 
M−1K. 
Lower bound constraint on the threshold frequency 

¯Ω ≥ Ω 

Property: 
¯ ¯Ω ≥ Ω ⇐⇒ K − Ω2M � 0 . 

22.3 Truss Vibration Design 
Slide 85 

We wrote the stiffness matrix as a linear function of the volumes ti of the bars i: 

m ∑ Ei
K = ti 

L2 
(ai)(ai)

T , 
i

i=1 

Li is the length of bar i 
Ei is the Young’s modulus of bar i 
ti is  the volume of  bar  i. 

22.4 Truss Vibration Design 
Slide 86 

tiHere we use yi to represent the area of bar i (yi = 
Li 

) 

m [	 m 

K = K(y) = 	
Ei 

(ai)(ai)
T 
] 

yi = Kiyi 
Li 

i=1	 i=1 

where 

Ki =	
Ei 

(ai)(ai)
T 
] 

, i  = 1, . . . , m  
Li Slide 87 
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There are matrices M1, . . . , Mm for which we can write the mass matrix as a linear 
function of the areas y1, . . . , ym: 

m 

M = M(y) =  Miyi 

i=1 

Slide 88 
In truss vibration design, we seek to design a truss of minimum weight whose threshold 

¯frequency Ω is at least a pre-specified value Ω. 

m 

TSDP  : minimize biyi

i=1


m 
¯s.t. (Ki − Ω2Mi)yi � 0


i=1


li ≤ yi ≤ ui , i  = 1, . . . , m  .  

The decision variables are y1, . . . , ym Slide 89 
li, ui are bounds on the area yi of bar i (perhaps from the output of the static truss 
design model) 
bi is the length of bar i times the material density of bar i Slide 90 

m 

TSDP  : minimizey biyi

i=1


m 
¯s.t. (Ki − Ω2Mi)yi � 0


i=1


li ≤ yi ≤ ui , i  = 1, . . . , m  .  

22.5 Computational Example 
Slide 91 

m 

TSDP  : minimizey biyi

i=1


m 

Ω2Mi)yi � 0 
i=1 

s.t. (Ki − ¯

li ≤ yi ≤ ui , i  = 1, . . . , m  .  
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Slide 92 

m 

TSDP  : minimizey biyi

i=1

m 

Ω2Mi)yi � 0 
i=1 

li ≤ yi ≤ ui , i  = 1, . . . , m  .  

s.t. (Ki − ¯

• li = 5.0 square inches for all bars i 

• ui = 8.0 square inches for all bars i 

• mass density for steel, which is ρ =0.736e−03 

• Young’s modulus for steel, which is 3.0e+07 pounds per square inch 

¯• Ω = 220Hz 

22.5.1 SDPT3 
Slide 93 

SDPT3 is the semidefinite programming software developed by “T3”: 

• Kim Chuan Toh of National University of Singapore 

ut¨• Reha T¨ unçu of Carnegie Mellon University 

• Michael Todd of Cornell University 

Statistics for TSDP problem run using SDPT3 

Linear Inequalities 
Semidefinite block size 

CPU time (seconds): 
IPM Iterations: 

Slide 94 

14 
6 × 6 
0.8
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Optimal Solution 

Bar 1 area (square inches) 8.0000 
Bar 2 area (square inches) 8.0000 
Bar 3 area (square inches) 7.1797 
Bar 4 area (square inches) 6.9411 
Bar 5 area (square inches) 5.0000 
Bar 6 area (square inches) 6.9411 
Bar 7 area (square inches) 7.1797 
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22.6 More Computation 
Slide 96 

A truss tower used for computational experiments. This version of the tower has 40 
bars and 32 degrees of freedom. 

25 



60 40 20 0 20 40 60 
0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 
tower 

Slide 97 
Computational results using SDPT3 for truss frequency optimization. 

12 × 12 30 15 17 1.17 
20 × 20 50 25 20 1.49 
32 × 32 80 40 21 1.88 
48 × 48 120 60 20 2.73 
60 × 60 150 75 20 3.76 
80 × 80 200 100 23 5.34 

120 × 120 300 150 23 9.46 

Semidefinite Linear Scalar IPM CPU time 
Block Inequalities Variables Iterations (sec) 

22.6.1 Frontier Solutions 
Slide 98 

Lower bound on Threshold Frequency Ω versus Weight of Structure 
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