Introduction to Semidefinite Programming (SDP)

Robert M. Freund and Brian Anthony with assistance from David Craft

May 4-6, 2004

1 Outline

- Alternate View of Linear Programming
- Facts about Symmetric and Semidefinite Matrices
- SDP
- SDP Duality
- Examples of SDP
- Combinatorial Optimization: MAXCUT
- Convex Optimization: Quadratic Constraints, Eigenvalue Problems, $\log \operatorname{det}(X)$ problems
- Interior-Point Methods for SDP
- Application: Truss Vibration Dynamics via SDP

2 Linear Programming

2.1 Alternative Perspective

LP: minimize $c \cdot x$

$$
\begin{array}{ll}
\text { s.t. } & a_{i} \cdot x=b_{i}, \quad i=1, \ldots, m \\
& x \in \Re_{+}^{n} .
\end{array}
$$

" $c \cdot x$ " means the linear function " $\sum_{j=1}^{n} c_{j} x_{j}$ "
$\Re_{+}^{n}:=\left\{x \in \Re^{n} \mid x \geq 0\right\}$ is the nonnegative orthant.
\Re_{+}^{n} is a convex cone.
K is convex cone if $x, w \in K$ and $\alpha, \beta \geq 0 \Rightarrow \alpha x+\beta w \in K$.

$$
\begin{array}{cl}
L P: \operatorname{minimize} & c \cdot x \\
& \text { s.t. } \\
& a_{i} \cdot x=b_{i}, \quad i=1, \ldots, m \\
& x \in \Re_{+}^{n} .
\end{array}
$$

"Minimize the linear function $c \cdot x$, subject to the condition that x must solve m given equations $a_{i} \cdot x=b_{i}, i=1, \ldots, m$, and that x must lie in the convex cone $K=\Re_{+}^{n}$."
2.1.1 LP Dual Problem

$$
\begin{array}{cll}
L D: & \text { maximize } & \sum_{i=1}^{m} y_{i} b_{i} \\
& \text { s.t. } & \sum_{i=1}^{m} y_{i} a_{i}+s=c \\
& s \in \Re_{+}^{n} .
\end{array}
$$

For feasible solutions x of $L P$ and (y, s) of $L D$, the duality gap is simply

$$
c \cdot x-\sum_{i=1}^{m} y_{i} b_{i}=\left(c-\sum_{i=1}^{m} y_{i} a_{i}\right) \cdot x=s \cdot x \geq 0
$$

If $L P$ and $L D$ are feasible, then there exists x^{*} and $\left(y^{*}, s^{*}\right)$ feasible for the primal and dual, respectively, for which

$$
c \cdot x^{*}-\sum_{i=1}^{m} y_{i}^{*} b_{i}=s^{*} \cdot x^{*}=0
$$

3 Facts about the Semidefinite Cone

If X is an $n \times n$ matrix, then X is a symmetric positive semidefinite (SPSD) matrix if $X=X^{T}$ and

$$
v^{T} X v \geq 0 \text { for any } v \in \Re^{n}
$$

If X is an $n \times n$ matrix, then X is a symmetric positive definite (SPD) matrix if $X=X^{T}$ and

$$
v^{T} X v>0 \text { for any } v \in \Re^{n}, v \neq 0
$$

4 Facts about the Semidefinite Cone

S^{n} denotes the set of symmetric $n \times n$ matrices
S_{+}^{n} denotes the set of (SPSD) $n \times n$ matrices.
S_{++}^{n} denotes the set of (SPD) $n \times n$ matrices. Let $X, Y \in S^{n}$.
" $X \succeq 0$ " denotes that X is SPSD
" $X \succeq Y$ " denotes that $X-Y \succeq 0$
" $X \succ 0$ " to denote that X is SPD, etc.
Remark: $S_{+}^{n}=\left\{X \in S^{n} \mid X \succeq 0\right\}$ is a convex cone.

5 Facts about Eigenvalues and Eigenvectors

If M is a square $n \times n$ matrix, then λ is an eigenvalue of M with corresponding eigenvector q if

$$
M q=\lambda q \text { and } q \neq 0
$$

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ enumerate the eigenvalues of M.

6 Facts about Eigenvalues and Eigenvectors

The corresponding eigenvectors $q^{1}, q^{2}, \ldots, q^{n}$ of M can be chosen so that they are orthonormal, namely

$$
\left(q^{i}\right)^{T}\left(q^{j}\right)=0 \text { for } i \neq j, \text { and }\left(q^{i}\right)^{T}\left(q^{i}\right)=1
$$

Define:

$$
Q:=\left[\begin{array}{llll}
q^{1} & q^{2} & \cdots & q^{n}
\end{array}\right]
$$

Then Q is an orthonormal matrix:

$$
Q^{T} Q=I, \text { equivalently } Q^{T}=Q^{-1}
$$

$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of M
$q^{1}, q^{2}, \ldots, q^{n}$ are the corresponding orthonormal eigenvectors of M

$$
\begin{gathered}
Q:=\left[\begin{array}{lll}
q^{1} q^{2} \cdots & q^{n}
\end{array}\right] \\
Q^{T} Q=I, \text { equivalently } Q^{T}=Q^{-1}
\end{gathered}
$$

Define D :

$$
D:=\left(\begin{array}{cccc}
\lambda_{1} & 0 & & 0 \\
0 & \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right)
$$

Property: $M=Q D Q^{T}$.
The decomposition of M into $M=Q D Q^{T}$ is called its eigendecomposition.

7 Facts about Symmetric Matrices

- If $X \in S^{n}$, then $X=Q D Q^{T}$ for some orthonormal matrix Q and some diagonal matrix D. The columns of Q form a set of n orthogonal eigenvectors of X, whose eigenvalues are the corresponding entries of the diagonal matrix D.
- $X \succeq 0$ if and only if $X=Q D Q^{T}$ where the eigenvalues (i.e., the diagonal entries of D) are all nonnegative.
- $X \succ 0$ if and only if $X=Q D Q^{T}$ where the eigenvalues (i.e., the diagonal entries of D) are all positive.
- If M is symmetric, then

$$
\operatorname{det}(M)=\prod_{j=1}^{n} \lambda_{j}
$$

- Consider the matrix M defined as follows:

$$
M=\left(\begin{array}{cc}
P & v \\
v^{T} & d
\end{array}\right)
$$

where $P \succ 0, v$ is a vector, and d is a scalar. Then $M \succeq 0$ if and only if $d-v^{T} P^{-1} v \geq 0$.

- For a given column vector a, the matrix $X:=a a^{T}$ is SPSD, i.e., $X=a a^{T} \succeq 0$.
- If $M \succeq 0$, then there is a matrix N for which $M=N^{T} N$. To see this, simply take $N=D^{\frac{1}{2}} Q^{T}$.

8 SDP

8.1 Semidefinite Programming

8.1.1 Think about X

Let $X \in S^{n}$. Think of X as:

- a matrix
- an array of n^{2} components of the form $\left(x_{11}, \ldots, x_{n n}\right)$
- an object (a vector) in the space S^{n}.

All three different equivalent ways of looking at X will be useful.

8.1.2 Linear Function of X

Let $X \in S^{n}$. What will a linear function of X look like?
If $C(X)$ is a linear function of X, then $C(X)$ can be written as $C \bullet X$, where

$$
C \bullet X:=\sum_{i=1}^{n} \sum_{j=1}^{n} C_{i j} X_{i j} .
$$

There is no loss of generality in assuming that the matrix C is also symmetric.

8.1.3 Definition of SDP

$$
\begin{array}{cl}
S D P: \quad \text { minimize } & C \bullet X \\
\text { s.t. } & A_{i} \bullet X=b_{i}, i=1, \ldots, m, \\
& X \succeq 0,
\end{array}
$$

" $X \succeq 0$ " is the same as " $X \in S_{+}^{n}$ "
The data for $S D P$ consists of the symmetric matrix C (which is the data for the objective function) and the m symmetric matrices A_{1}, \ldots, A_{m}, and the m-vector b, which form the m linear equations.

8.1.4 Example

$$
A_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 3 & 7 \\
1 & 7 & 5
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
0 & 2 & 8 \\
2 & 6 & 0 \\
8 & 0 & 4
\end{array}\right), b=\binom{11}{19}, \quad \text { and } C=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 9 & 0 \\
3 & 0 & 7
\end{array}\right),
$$

The variable X will be the 3×3 symmetric matrix:

$$
X=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)
$$

It may be helpful to think of " $X \succeq 0$ " as stating that each of the n eigenvalues of X must be nonnegative.
8.1.5 $L P \subset S D P$

LP: minimize $c \cdot x$
s.t. $\quad a_{i} \cdot x=b_{i}, \quad i=1, \ldots, m$ $x \in \Re_{+}^{n}$.

Define:

$$
\begin{gathered}
A_{i}=\left(\begin{array}{cccc}
a_{i 1} & 0 & \ldots & 0 \\
0 & a_{i 2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{i n}
\end{array}\right), \quad i=1, \ldots, m, \quad \text { and } C=\left(\begin{array}{cccc}
c_{1} & 0 & \ldots & 0 \\
0 & c_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ldots & c_{n}
\end{array}\right) \\
S D P: \\
0 \\
0 \\
\text { minimize } \\
\text { s.t. } \\
\quad \begin{array}{l}
A_{i} \bullet X \\
\\
A_{i j}=0, \\
X_{i}=b_{i}, i=1, \ldots, n, m,
\end{array} \\
X=\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & x_{n}
\end{array}\right)
\end{gathered}
$$

$9 \quad$ SDP Duality

$$
S D D: \quad \text { maximize } \sum_{i=1}^{m} y_{i} b_{i}
$$

$$
\text { s.t. } \quad \sum_{i=1}^{m} y_{i} A_{i}+S=C
$$

$$
S \succeq 0
$$

Notice

$$
S=C-\sum_{i=1}^{m} y_{i} A_{i} \succeq 0
$$

$$
\begin{aligned}
& S D P: \quad \text { minimize } \quad x_{11}+4 x_{12}+6 x_{13}+9 x_{22}+0 x_{23}+7 x_{33} \\
& \text { s.t. } \quad x_{11}+0 x_{12}+2 x_{13}+3 x_{22}+14 x_{23}+5 x_{33}=11 \\
& 0 x_{11}+4 x_{12}+16 x_{13}+6 x_{22}+0 x_{23}+4 x_{33}=19 \\
& X=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \succeq 0 . \\
& S D P: \quad \text { minimize } \quad x_{11}+4 x_{12}+6 x_{13}+9 x_{22}+0 x_{23}+7 x_{33} \\
& \text { s.t. } \quad x_{11}+0 x_{12}+2 x_{13}+3 x_{22}+14 x_{23}+5 x_{33}=11 \\
& 0 x_{11}+4 x_{12}+16 x_{13}+6 x_{22}+0 x_{23}+4 x_{33}=19 \\
& X=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \succeq 0 .
\end{aligned}
$$

10 SDP Duality

and so equivalently:

$$
\begin{array}{cl}
S D D: & \operatorname{maximize}
\end{array} \sum_{i=1}^{m} y_{i} b_{i} .
$$

10.1 Example

$$
\begin{array}{ll}
A_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 3 & 7 \\
1 & 7 & 5
\end{array}\right), & A_{2}=\left(\begin{array}{lll}
0 & 2 & 8 \\
2 & 6 & 0 \\
8 & 0 & 4
\end{array}\right), b=\binom{11}{19}, \quad \text { and } C=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 9 & 0 \\
3 & 0 & 7
\end{array}\right) \\
S D D: & \text { maximize } \\
\text { s.t. } & 11 y_{1}+19 y_{2} \\
& y_{1}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 3 & 7 \\
1 & 7 & 5
\end{array}\right)+y_{2}\left(\begin{array}{lll}
0 & 2 & 8 \\
2 & 6 & 0 \\
8 & 0 & 4
\end{array}\right)+S=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 9 & 0 \\
3 & 0 & 7
\end{array}\right) \\
S D D: & \text { maximize } \\
& 11 y_{1}+19 y_{2}
\end{array}
$$

$$
\text { s.t. } \quad y_{1}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & 7 \\
1 & 7 & 5
\end{array}\right)+y_{2}\left(\begin{array}{ccc}
0 & 2 & 8 \\
2 & 6 & 0 \\
8 & 0 & 4
\end{array}\right)+S=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 9 & 0 \\
3 & 0 & 7
\end{array}\right)
$$

$$
S \succeq 0
$$

is the same as:
$S D D: \quad$ maximize

$$
11 y_{1}+19 y_{2}
$$

s.t

$$
\left(\begin{array}{lll}
1-1 y_{1}-0 y_{2} & 2-0 y_{1}-2 y_{2} & 3-1 y_{1}-8 y_{2} \\
2-0 y_{1}-2 y_{2} & 9-3 y_{1}-6 y_{2} & 0-7 y_{1}-0 y_{2} \\
3-1 y_{1}-8 y_{2} & 0-7 y_{1}-0 y_{2} & 7-5 y_{1}-4 y_{2}
\end{array}\right) \succeq 0 .
$$

10.2 Weak Duality

Weak Duality Theorem: Given a feasible solution X of $S D P$ and a feasible solution (y, S) of $S D D$, the duality gap is

$$
C \bullet X-\sum_{i=1}^{m} y_{i} b_{i}=S \bullet X \geq 0 .
$$

If

$$
C \bullet X-\sum_{i=1}^{m} y_{i} b_{i}=0
$$

then X and (y, S) are each optimal solutions to $S D P$ and $S D D$, respectively, and furthermore, $S X=0$.

10.3 Strong Duality

Strong Duality Theorem: Let z_{P}^{*} and z_{D}^{*} denote the optimal objective function values of $S D P$ and $S D D$, respectively. Suppose that there exists a feasible solution \hat{X} of $S D P$ such that $\hat{X} \succ 0$, and that there exists a feasible solution (\hat{y}, \hat{S}) of $S D D$ such that $\hat{S} \succ 0$. Then both $S D P$ and $S D D$ attain their optimal values, and

$$
z_{P}^{*}=z_{D}^{*} .
$$

11 Some Important Weaknesses of SDP

- There may be a finite or infinite duality gap.
- The primal and/or dual may or may not attain their optima.
- Both programs will attain their common optimal value if both programs have feasible solutions that are SPD.
- There is no finite algorithm for solving $S D P$.
- There is a simplex algorithm, but it is not a finite algorithm. There is no direct analog of a "basic feasible solution" for $S D P$.

12 SDP in Combinatorial Optimization

12.0.1 The MAX CUT Problem

G is an undirected graph with nodes $N=\{1, \ldots, n\}$ and edge set E.
Let $w_{i j}=w_{j i}$ be the weight on edge (i, j), for $(i, j) \in E$.
We assume that $w_{i j} \geq 0$ for all $(i, j) \in E$.
The MAX CUT problem is to determine a subset S of the nodes N for which the sum of the weights of the edges that cross from S to its complement \bar{S} is maximized $(\bar{S}:=N \backslash S)$.

12.0.2 Formulations

The MAX CUT problem is to determine a subset S of the nodes N for which the sum of the weights $w_{i j}$ of the edges that cross from S to its complement \bar{S} is maximized ($\bar{S}:=N \backslash S$).
Let $x_{j}=1$ for $j \in S$ and $x_{j}=-1$ for $j \in \bar{S}$.

$$
\begin{array}{cc}
\text { MAXCUT : } \text { maximize }_{x} & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(1-x_{i} x_{j}\right) \\
\text { s.t. } & x_{j} \in\{-1,1\}, \quad j=1, \ldots, n . \\
\text { MAXCUT : maximize } & { }_{x} \\
& \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(1-x_{i} x_{j}\right) \\
\text { s.t. } & x_{j} \in\{-1,1\}, \quad j=1, \ldots, n .
\end{array}
$$

Let

$$
Y=x x^{T}
$$

Then

$$
Y_{i j}=x_{i} x_{j} \quad i=1, \ldots, n, \quad j=1, \ldots, n
$$

Also let W be the matrix whose $(i, j)^{\text {th }}$ element is $w_{i j}$ for $i=1, \ldots, n$ and $j=1, \ldots, n$. Then

$$
\begin{array}{cl}
\text { MAXCUT: } \operatorname{maximize}_{Y, x} & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}-W \bullet Y \\
\text { s.t. } & x_{j} \in\{-1,1\}, \quad j=1, \ldots, n \\
& Y=x x^{T} . \\
\text { MAXCUT : maximize }{ }_{Y, x} & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}-W \bullet Y \\
\text { s.t. } & x_{j} \in\{-1,1\}, \quad j=1, \ldots, n \\
& Y=x x^{T} .
\end{array}
$$

The first set of constraints are equivalent to $Y_{j j}=1, j=1, \ldots, n$.

$$
\begin{array}{cl}
\text { MAXCUT } \quad \operatorname{maximize}_{Y, x} & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}-W \bullet Y \\
\text { s.t. } & Y_{j j}=1, \quad j=1, \ldots, n \\
& Y=x x^{T} .
\end{array}
$$

$$
\begin{array}{cl}
\text { MAXCUT } \operatorname{maximize}_{Y, x} & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}-W \bullet Y \\
\text { s.t. } & Y_{j j}=1, \quad j=1, \ldots, n \\
& Y=x x^{T} .
\end{array}
$$

Notice that the matrix $Y=x x^{T}$ is a rank-1 SPSD matrix.
We relax this condition by removing the rank-1 restriction:

$$
\begin{array}{cl}
\text { RELAX : }^{\text {maximize }}{ }_{Y} & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}-W \bullet Y \\
\text { s.t. } & Y_{j j}=1, \quad j=1, \ldots, n \\
& Y \succeq 0 .
\end{array}
$$

It is therefore easy to see that RELAX provides an upper bound on MAXCUT, i.e.,

$$
M A X C U T \leq R E L A X
$$

$$
\begin{array}{cl}
R E L A X: & \operatorname{maximize}_{Y} \\
\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}-W \bullet Y \\
\text { s.t. } & Y_{j j}=1, \quad j=1, \ldots, n \\
& Y \succeq 0 .
\end{array}
$$

As it turns out, one can also prove without too much effort that:

$$
0.87856 R E L A X \leq M A X C U T \leq R E L A X
$$

This is an impressive result, in that it states that the value of the semidefinite relaxation is guaranteed to be no more than 12.2% higher than the value of $N P$-hard problem MAX CUT.

13 SDP for Convex QCQP

A convex quadratically constrained quadratic program (QCQP) is a problem of the form:

$$
\begin{array}{cl}
Q C Q P: & \underset{x}{\operatorname{minimize}} \\
& x^{T} Q_{0} x+q_{0}^{T} x+c_{0} \\
& \text { s.t. } \\
x^{T} Q_{i} x+q_{i}^{T} x+c_{i} \leq 0 \quad, i=1, \ldots, m,
\end{array}
$$

where the $Q_{0} \succeq 0$ and $Q_{i} \succeq 0, \quad i=1, \ldots, m$. This is the same as:

$$
\begin{array}{ll}
Q C Q P: & \underset{x, \theta}{\operatorname{minimize}}
\end{array} \quad \theta
$$

$$
\begin{array}{lll}
Q C Q P: & \underset{ }{\operatorname{minimize}} & \theta \\
& \text { s.t. } & x^{T} Q_{0} x+q_{0}^{T} x+c_{0}-\theta \leq 0 \\
& & x^{T} Q_{i} x+q_{i}^{T} x+c_{i} \leq 0 \quad, i=1, \ldots, m .
\end{array}
$$

Factor each Q_{i} into

$$
Q_{i}=M_{i}^{T} M_{i}
$$

and note the equivalence:

$$
\left(\begin{array}{cc}
I & M_{i} x \\
x^{T} M_{i}^{T} & -c_{i}-q_{i}^{T} x
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad x^{T} Q_{i} x+q_{i}^{T} x+c_{i} \leq 0 .
$$

$$
\begin{array}{lll}
Q C Q P: & \begin{array}{c}
\text { minimize } \\
\\
\text { s.t. }
\end{array} & \theta \\
& & x^{T} Q_{0} x+q_{0}^{T} x+c_{0}-\theta \leq 0 \\
& & x^{T} Q_{i} x+q_{i}^{T} x+c_{i} \leq 0 \quad, i=1, \ldots, m
\end{array}
$$

Re-write $Q C Q P$ as:

$$
\begin{aligned}
& Q C Q P: \quad \text { minimize } \theta \\
& x, \theta \\
& \text { s.t. } \quad\left(\begin{array}{cc}
I & M_{0} x \\
x^{T} M_{0}^{T} & -c_{0}-q_{0}^{T} x+\theta
\end{array}\right) \succeq 0 \\
& \left(\begin{array}{cc}
I & M_{i} x \\
x^{T} M_{i}^{T} & -c_{i}-q_{i}^{T} x
\end{array}\right) \succeq 0, i=1, \ldots, m .
\end{aligned}
$$

14 SDP for SOCP

14.1 Second-Order Cone Optimization

Second-order cone optimization:

$$
\begin{array}{ll}
\mathrm{SOCP}: \quad \min _{x} & c^{T} x \\
\text { s.t. } & A x=b \\
& \left\|Q_{i} x+d_{i}\right\| \leq\left(g_{i}^{T} x+h_{i}\right), \quad i=1, \ldots, k
\end{array}
$$

Recall $\|v\|:=\sqrt{v^{T} v}$
SOCP : $\min _{x} c^{T} x$
s.t. $\quad A x=b$

$$
\left\|Q_{i} x+d_{i}\right\| \leq\left(g_{i}^{T} x+h_{i}\right), \quad i=1, \ldots, k
$$

Property:

$$
\|Q x+d\| \leq\left(g^{T} x+h\right) \Longleftrightarrow\left(\begin{array}{cc}
\left(g^{T} x+h\right) I & (Q x+d) \\
(Q x+d)^{T} & g^{T} x+h
\end{array}\right) \succeq 0
$$

This property is a direct consequence of the fact that

$$
M=\left(\begin{array}{cc}
P & v \\
v^{T} & d
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad d-v^{T} P^{-1} v \geq 0
$$

$$
\begin{array}{lll}
\mathrm{SOCP}: \quad & \min _{x} \quad & c^{T} x \\
& \text { s.t. } & A x=b \\
& \left\|Q_{i} x+d_{i}\right\| \leq\left(g_{i}^{T} x+h_{i}\right), \quad i=1, \ldots, k
\end{array}
$$

Re-write as:

$$
\begin{array}{lll}
\text { SDPSOCP : } & \min _{x} & c^{T} x \\
& \text { s.t. } & A x=b \\
& & \left(\begin{array}{cc}
\left(g_{i}^{T} x+h_{i}\right) I & \left(Q_{i} x+d_{i}\right) \\
\left(Q_{i} x+d_{i}\right)^{T} & g_{i}^{T} x+h_{i}
\end{array}\right) \succeq 0, \quad i=1, \ldots, k .
\end{array}
$$

15 Eigenvalue Optimization

We are given symmetric matrices B and $A_{i}, i=1, \ldots, k$
Choose weights w_{1}, \ldots, w_{k} to create a new matrix S :

$$
S:=B-\sum_{i=1}^{k} w_{i} A_{i} .
$$

There might be restrictions on the weights $G w \leq d$.
The typical goal is for S is to have some nice property such as:

- $\lambda_{\min }(S)$ is maximized
- $\lambda_{\max }(S)$ is minimized
- $\lambda_{\max }(S)-\lambda_{\min }(S)$ is minimized

15.1 Some Useful Relationships

Property: $M \succeq t I$ if and only if $\lambda_{\min }(M) \geq t$.
Proof: $M=Q D Q^{T}$. Define

$$
\begin{gathered}
R=M-t I=Q D Q^{T}-t I=Q(D-t I) Q^{T} . \\
M \succeq t I \quad \Longleftrightarrow \quad R \succeq 0 \quad \Longleftrightarrow \quad D-t I \succeq 0 \quad \Longleftrightarrow \quad \lambda_{\min }(M) \geq t
\end{gathered}
$$

q.e.d.

Property: $M \preceq t I$ if and only if $\lambda_{\max }(M) \leq t$.

15.2 Design Problem

Consider the design problem:

$$
\begin{array}{cl}
E O P: & \underset{w, S}{\operatorname{minimize}} \\
& \lambda_{\max }(S)-\lambda_{\min }(S) \\
\text { s.t. } & S=B-\sum_{i=1}^{k} w_{i} A_{i} \\
& G w \leq d .
\end{array}
$$

$$
\begin{array}{cl}
\underset{w, S}{\operatorname{minimize}} & \lambda_{\max }(S)-\lambda_{\min }(S) \\
\text { s.t. } & S=B-\sum_{i=1}^{k} w_{i} A_{i} \\
& \\
& G w \leq d .
\end{array}
$$

This is equivalent to:

$$
\begin{array}{ccl}
E O P: & \begin{array}{l}
\text { minimize } \\
w, S, \mu, \lambda
\end{array} & \mu-\lambda \\
& \text { s.t. } & S=B-\sum_{i=1}^{k} w_{i} A_{i} \\
& & G w \leq d \\
& \lambda I \preceq S \preceq \mu I . &
\end{array}
$$

16 The Logarithmic Barrier Function for SPD Matrices

Let $X \succeq 0$, equivalently $X \in S_{+}^{n}$.
X will have n nonnegative eigenvalues, say $\lambda_{1}(X), \ldots, \lambda_{n}(X) \geq 0$ (possibly counting multiplicities).

$$
\begin{array}{r}
\partial S_{+}^{n}=\left\{X \in S^{n} \mid \lambda_{j}(X) \geq 0, j=1, \ldots, n,\right. \\
\text { and } \left.\lambda_{j}(X)=0 \text { for some } j \in\{1, \ldots, n\}\right\} .
\end{array}
$$

$$
\begin{gathered}
\partial S_{+}^{n}=\left\{X \in S^{n} \mid \lambda_{j}(X) \geq 0, j=1, \ldots, n\right. \\
\text { and } \left.\lambda_{j}(X)=0 \text { for some } j \in\{1, \ldots, n\}\right\}
\end{gathered}
$$

A natural barrier function is:

$$
B(X):=-\sum_{j=1}^{n} \ln \left(\lambda_{i}(X)\right)=-\ln \left(\prod_{j=1}^{n} \lambda_{i}(X)\right)=-\ln (\operatorname{det}(X))
$$

This function is called the log-determinant function or the logarithmic barrier function for the semidefinite cone.

$$
B(X):=-\sum_{j=1}^{n} \ln \left(\lambda_{i}(X)\right)=-\ln \left(\prod_{j=1}^{n} \lambda_{i}(X)\right)=-\ln (\operatorname{det}(X))
$$

Quadratic Taylor expansion at $X=\bar{X}$:

$$
B(\bar{X}+\alpha D) \approx B(\bar{X})+\alpha \bar{X}^{-1} \bullet D+\frac{1}{2} \alpha^{2}\left(\bar{X}^{-\frac{1}{2}} D \bar{X}^{-\frac{1}{2}}\right) \bullet\left(\bar{X}^{-\frac{1}{2}} D \bar{X}^{-\frac{1}{2}}\right)
$$

$B(X)$ has the same remarkable properties in the context of interior-point methods for $S D P$ as the barrier function $-\sum_{j=1}^{n} \ln \left(x_{j}\right)$ does in the context of linear optimization.

17 The SDP Analytic Center Problem

Given a system:

$$
\sum_{i=1}^{m} y_{i} A_{i} \preceq C,
$$

the analytic center is the solution (\hat{y}, \hat{S}) of:
(ACP:) $\quad \operatorname{maximize}_{y, S} \quad \prod_{i=1}^{n} \lambda_{i}(S)$

$$
\text { s.t. } \quad \sum_{i=1}^{m} y_{i} A_{i}+S=C
$$

$$
S \succeq 0 .
$$

(ACP:) $\quad \operatorname{maximize}_{y, S} \quad \prod_{i=1}^{n} \lambda_{i}(S)$

$$
\begin{gathered}
\text { s.t. } \quad \sum_{i=1}^{m} y_{i} A_{i}+S=C \\
S \succeq 0 .
\end{gathered}
$$

This is the same as:
(ACP:) $\operatorname{minimize}_{y, S} \quad-\ln \operatorname{det}(S)$

$$
\text { s.t. } \quad \sum_{i=1}^{m} y_{i} A_{i}+S=C
$$

$$
S \succ 0 .
$$

(ACP:) $\operatorname{minimize}_{y, S} \quad-\ln \operatorname{det}(S)$

$$
\begin{array}{cc}
\text { s.t. } \quad \sum_{i=1}^{m} y_{i} A_{i}+S=C \\
S \succ 0 .
\end{array}
$$

Let (\hat{y}, \hat{S}) be the analytic center.
There are easy-to-construct ellipsoids $E_{\text {IN }}$ and $E_{\text {OUT }}$, both centered at \hat{y} and where $E_{\text {OUT }}$ is a scaled version of $E_{\text {IN }}$ with scale factor n, with the property that:

$$
E_{\mathrm{IN}} \subset P \subset E_{\mathrm{OUT}}
$$

18 Minimum Volume Circumscription

$R \succ 0$ and $z \in \Re^{n}$ define an ellipsoid in \Re^{n} :

$$
E_{R, z}:=\left\{y \mid(y-z)^{T} R(y-z) \leq 1\right\}
$$

The volume of $E_{R, z}$ is proportional to $\sqrt{\operatorname{det}\left(R^{-1}\right)}$.
Given k points c_{1}, \ldots, c_{k}, we would like to find an ellipsoid circumscribing c_{1}, \ldots, c_{k} that has minimum volume:

$$
\begin{array}{lcl}
M C P: & \operatorname{minimize} & \operatorname{vol}\left(E_{R, z}\right) \\
& R, z & \\
& \text { s.t. } & c_{i} \in E_{R, z}, \quad i=1, \ldots, k
\end{array}
$$

which is equivalent to:

$$
\begin{array}{cl}
M C P: \underset{R, z}{\operatorname{minimize}} & -\ln (\operatorname{det}(R)) \\
& \text { s.t. } \\
& \left(c_{i}-z\right)^{T} R\left(c_{i}-z\right) \leq 1, \quad i=1, \ldots, k \\
& R \succ 0
\end{array}
$$

$$
\begin{array}{cl}
M C P: & \underset{R, z}{\operatorname{minimize}} \\
& -\ln (\operatorname{det}(R)) \\
& \text { s.t. } \\
\left(c_{i}-z\right)^{T} R\left(c_{i}-z\right) \leq 1, \quad i=1, \ldots, k
\end{array}
$$

$$
R \succ 0
$$

Factor $R=M^{2}$ where $M \succ 0$ (that is, M is a square root of R):

$$
\begin{array}{cl}
M C P: \underset{M, z}{\operatorname{minimize}} & -\ln \left(\operatorname{det}\left(M^{2}\right)\right) \\
& \\
& \left(c_{i}-z\right)^{T} M^{T} M\left(c_{i}-z\right) \leq 1, \quad i=1, \ldots, k, \\
& M \succ 0
\end{array}
$$

$$
\begin{array}{ccl}
M C P: & \operatorname{minimize} & -\ln \left(\operatorname{det}\left(M^{2}\right)\right) \\
& M, z & \left(c_{i}-z\right)^{T} M^{T} M\left(c_{i}-z\right) \leq 1, \quad i=1, \ldots, k,
\end{array}
$$

Notice the equivalence:

$$
\left(\begin{array}{cc}
I & M c_{i}-M z \\
\left(M c_{i}-M z\right)^{T} & 1
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad\left(c_{i}-z\right)^{T} M^{T} M\left(c_{i}-z\right) \leq 1
$$

Re-write $M C P$:

$$
\begin{array}{rll}
M C P: & \operatorname{minimize} & -2 \ln (\operatorname{det}(M)) \\
M, z & \\
& \text { s.t. } & \left(\begin{array}{cc}
I & M c_{i}-M z \\
\left(M c_{i}-M z\right)^{T} & 1
\end{array}\right) \succeq 0, \quad i=1, \ldots, k, \\
& M \succ 0 .
\end{array}
$$

$M C P: \quad$ minimize $\quad-2 \ln (\operatorname{det}(M))$

$$
\begin{array}{llc}
M, z & I & M c_{i}-M z \\
\text { s.t. } & \left(\begin{array}{c}
I
\end{array}\right) \succeq 0, \quad i=1, \ldots, k, \\
& M \succ 0 .
\end{array}
$$

Substitute $y=M z$:

$$
\begin{array}{cl}
M C P: & \left.\begin{array}{cc}
\operatorname{minimize} & -2 \ln (\operatorname{det}(M)) \\
M, y & \\
& \text { s.t. } \\
& \left(M c_{i}-y\right)^{T}
\end{array}\right) 1 \\
& M \succ 0 .
\end{array}
$$

$$
M C P: \quad \operatorname{minimize} \quad-2 \ln (\operatorname{det}(M))
$$

$$
M, y
$$

$$
\begin{array}{ll}
\text { s.t. } & \left(\begin{array}{cc}
I & M c_{i}-y \\
\left(M c_{i}-y\right)^{T} & 1
\end{array}\right) \succeq 0, \quad i=1, \ldots, k, \\
M \succ 0 .
\end{array}
$$

This problem is very easy to solve.
Recover the original solution R, z by computing:

$$
R=M^{2} \text { and } z=M^{-1} y
$$

19 SDP in Control Theory

A variety of control and system problems can be cast and solved as instances of $S D P$. This topic is beyond the scope of this lecturer's expertise.

20 Interior-point Methods for SDP

20.1 Primal and Dual SDP

$$
\begin{array}{ccl}
S D P: & \text { minimize } & C \bullet X \\
& \text { s.t. } & A_{i} \bullet X=b_{i} \quad, i=1, \ldots, m \\
& X \succeq 0
\end{array}
$$

and

$$
\begin{array}{rll}
S D D: & \text { maximize } & \sum_{i=1}^{m} y_{i} b_{i} \\
\text { s.t. } & \sum_{i=1}^{m} y_{i} A_{i}+S=C \\
& S \succeq 0 .
\end{array}
$$

If X and (y, S) are feasible for the primal and the dual, the duality gap is:

$$
C \bullet X-\sum_{i=1}^{m} y_{i} b_{i}=S \bullet X \geq 0
$$

Also,

$$
S \bullet X=0 \Longleftrightarrow S X=0
$$

$$
B(X)=-\sum_{j=1}^{n} \ln \left(\lambda_{i}(X)\right)=-\ln \left(\prod_{j=1}^{n} \lambda_{i}(X)\right)=-\ln (\operatorname{det}(X))
$$

Consider:

$$
B S D P(\mu): \quad \text { minimize } \quad C \bullet X-\mu \ln (\operatorname{det}(X))
$$

$$
\begin{array}{ll}
\text { s.t. } & A_{i} \bullet X=b_{i} \quad, i=1, \ldots, m
\end{array}
$$

$$
X \succ 0
$$

Let $f_{\mu}(X)$ denote the objective function of $\operatorname{BSDP}(\mu)$. Then:

$$
-\nabla f_{\mu}(X)=C-\mu X^{-1}
$$

$B S D P(\mu): \quad$ minimize $\quad C \bullet X-\mu \ln (\operatorname{det}(X))$

$$
\begin{array}{ll}
\text { s.t. } & A_{i} \bullet X=b_{i} \quad, i=1, \ldots, m, \\
& X \succ 0 .
\end{array}
$$

$\nabla f_{\mu}(X)=C-\mu X^{-1}$
Karush-Kuhn-Tucker conditions for $B S D P(\mu)$ are:

$$
\left\{\begin{array}{l}
A_{i} \bullet X=b_{i} \quad, i=1, \ldots, m \\
X \succ 0 \\
C-\mu X^{-1}=\sum_{i=1}^{m} y_{i} A_{i}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
A_{i} \bullet X=b_{i}, i=1, \ldots, m \\
X \succ 0, \\
C-\mu X^{-1}=\sum_{i=1}^{m} y_{i} A_{i}
\end{array}\right.
$$

Define

$$
S=\mu X^{-1}
$$

which implies

$$
X S=\mu I,
$$

and rewrite KKT conditions as:

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{i} \bullet X=b_{i}, i=1, \ldots, m, \quad X \succ 0 \\
\sum_{i=1}^{m} y_{i} A_{i}+S=C \\
X S=\mu I .
\end{array}\right. \\
& \left\{\begin{array}{l}
A_{i} \bullet X=b_{i}, i=1, \ldots, m, \quad X \succ 0 \\
\sum_{i=1}^{m} y_{i} A_{i}+S=C \\
X S=\mu I .
\end{array}\right.
\end{aligned}
$$

If (X, y, S) is a solution of this system, then X is feasible for $S D P,(y, S)$ is feasible for $S D D$, and the resulting duality gap is

$$
\begin{aligned}
S \bullet X= & \sum_{i=1}^{n} \sum_{j=1}^{n} S_{i j} X_{i j}=\sum_{j=1}^{n}(S X)_{j j}=\sum_{j=1}^{n}(\mu I)_{j j}=n \mu . \\
& \left\{\begin{array}{l}
A_{i} \bullet X=b_{i} \quad, i=1, \ldots, m, \quad X \succ 0 \\
\sum_{i=1}^{m} y_{i} A_{i}+S=C \\
X S=\mu I
\end{array}\right.
\end{aligned}
$$

This suggests that we try solving $B S D P(\mu)$ for a variety of values of μ as $\mu \rightarrow 0$.
Interior-point methods for $S D P$ are very similar to those for linear optimization, in that they use Newton's method to solve the KKT system as $\mu \rightarrow 0$.

21 Website for SDP

A good website for semidefinite programming is:

22 Optimization of Truss Vibration

22.1 Motivation

- The design and analysis of trusses are found in a wide variety of scientific applications including engineering mechanics, structural engineering, MEMS, and biomedical engineering.
- As finite approximations to solid structures, a truss is the fundamental concept of Finite Element Analysis.
- The truss problem also arises quite obviously and naturally in the design of scaffolding-based structures such as bridges, the Eiffel tower, and the skeletons for tall buildings.

Slide 74

- Using semidefinite programming (SDP) and the interior-point software SDPT3, we will explore an elegant and powerful technique for optimizing truss vibration dynamics.
- The problem we consider here is designing a truss such that the lowest frequency Ω at which it vibrates is above a given lower bound $\bar{\Omega}$.
- November 7, 1940, Tacoma Narrows Bridge in Tacoma, Washington

22.2 The Dynamics Model

Newton's Second Law of Motion:

$$
F=m \times a
$$

If the mass is pulled down, the displacement u produces a force in the spring tending to move the mass back to its equilibrium point (where $u=0$).
The displacement u causes an upward force $k \times u$, where k is the spring constant. We obtain from $F=m \times a$ that:

$$
-k u(t)=m \ddot{u}(t)
$$

Law of Motion:

$$
-k u(t)=m \ddot{u}(t)
$$

Solution:

$$
u(t)=\sin \left(\sqrt{\frac{k}{m}} t\right)
$$

Frequency of vibration:

$$
\omega=\sqrt{\frac{k}{m}} .
$$

22.2.1 Apply to Truss Structure

Law of Motion:

$$
-k u(t)=m \ddot{u}(t)
$$

Solution:

$$
\begin{gathered}
u(t)=\sin \left(\sqrt{\frac{k}{m}} t\right) \\
\omega=\sqrt{\frac{k}{m}}
\end{gathered}
$$

For truss structure, we need multidimensional analogs for $k, u(t)$, and m.
A simple truss.
Each bar has both stiffness and mass that depend on material properties and the bar's cross-sectional area.

22.2.2 Analog of k

The spring constant k extends to the stiffness matrix of a truss.
We used G to denote the stiffness matrix.
Here we will use K.

$$
K=G=A B^{-1} A^{T}
$$

Each column of A, denoted as a_{i}, is the projection of bar i onto the degrees of freedom of the nodes that bar i meets.

$$
B=\left(\begin{array}{ccc}
\frac{L_{1}^{2}}{E_{1} t_{1}} & & 0 \\
& \ddots & \\
0 & & \frac{L_{m}^{2}}{E_{m} t_{m}}
\end{array}\right) \quad, \quad B^{-1}=\left(\begin{array}{ccc}
\frac{E_{1} t_{1}}{L_{1}^{2}} & & 0 \\
& \ddots & \\
0 & & \frac{E_{m} t_{m}}{L_{m}^{2}}
\end{array}\right)
$$

22.2.3 Analog of m

Instead of a single displacement scalar $u(t)$, we have N degrees of freedom, and the vector

$$
u(t)=\left(u_{1}(t), \ldots, u_{N}(t)\right)
$$

is the vector of displacements.
The mass m extends to a mass matrix M
22.2.4 Laws of Motion

$$
-k u(t)=m \ddot{u}(t)
$$

becomes:

$$
-K u(t)=M \ddot{u}(t)
$$

Both K and M are SPD matrices, and are easily computed once the truss geometry and the nodal constraints are specified.

$$
-K u(t)=M \ddot{u}(t)
$$

The truss structure vibration involves sine functions with frequencies

$$
\omega_{i}=\sqrt{\lambda}_{i}
$$

where

$$
\lambda_{1}, \ldots, \lambda_{N}
$$

are the eigenvalues of

$$
M^{-1} K
$$

The threshold frequency Ω of the truss is the lowest frequency $\omega_{i}, i=1, \ldots, N$, or equivalently, the square root of the smallest eigenvalue of $M^{-1} K$.

$$
-K u(t)=M \ddot{u}(t)
$$

The threshold frequency Ω of the truss is the square root of the smallest eigenvalue of $M^{-1} K$.
Lower bound constraint on the threshold frequency

$$
\Omega \geq \bar{\Omega}
$$

Property:

$$
\Omega \geq \bar{\Omega} \Longleftrightarrow K-\bar{\Omega}^{2} M \succeq 0 .
$$

22.3 Truss Vibration Design

We wrote the stiffness matrix as a linear function of the volumes t_{i} of the bars i :

$$
K=\sum_{i=1}^{m} t_{i} \frac{E_{i}}{L_{i}^{2}}\left(a_{i}\right)\left(a_{i}\right)^{T},
$$

L_{i} is the length of bar i
E_{i} is the Young's modulus of bar i
t_{i} is the volume of bar i.

22.4 Truss Vibration Design

Here we use y_{i} to represent the area of bar $i\left(y_{i}=\frac{t_{i}}{L_{i}}\right)$

$$
K=K(y)=\sum_{i=1}^{m}\left[\frac{E_{i}}{L_{i}}\left(a_{i}\right)\left(a_{i}\right)^{T}\right] y_{i}=\sum_{i=1}^{m} K_{i} y_{i}
$$

where

$$
K_{i}=\left[\frac{E_{i}}{L_{i}}\left(a_{i}\right)\left(a_{i}\right)^{T}\right], i=1, \ldots, m
$$

There are matrices M_{1}, \ldots, M_{m} for which we can write the mass matrix as a linear function of the areas y_{1}, \ldots, y_{m} :

$$
M=M(y)=\sum_{i=1}^{m} M_{i} y_{i}
$$

In truss vibration design, we seek to design a truss of minimum weight whose threshold frequency Ω is at least a pre-specified value $\bar{\Omega}$.

$$
\begin{array}{ll}
T S D P: \quad \operatorname{minimize} & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m}\left(K_{i}-\bar{\Omega}^{2} M_{i}\right) y_{i} \succeq 0 \\
& l_{i} \leq y_{i} \leq u_{i}, i=1, \ldots, m .
\end{array}
$$

The decision variables are y_{1}, \ldots, y_{m}
l_{i}, u_{i} are bounds on the area y_{i} of bar i (perhaps from the output of the static truss design model)
b_{i} is the length of bar i times the material density of bar i

$$
\begin{array}{ll}
\text { TSDP: } \text { minimize }_{\mathrm{y}} & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m}\left(K_{i}-\bar{\Omega}^{2} M_{i}\right) y_{i} \succeq 0 \\
& l_{i} \leq y_{i} \leq u_{i}, i=1, \ldots, m .
\end{array}
$$

22.5 Computational Example

$$
\begin{array}{ll}
T S D P: \quad \operatorname{minimize}_{\mathrm{y}} & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m}\left(K_{i}-\bar{\Omega}^{2} M_{i}\right) y_{i} \succeq 0 \\
& l_{i} \leq y_{i} \leq u_{i}, i=1, \ldots, m .
\end{array}
$$

$$
\begin{array}{lll}
T S D P: & \text { minimize }_{\mathrm{y}} & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m}\left(K_{i}-\bar{\Omega}^{2} M_{i}\right) y_{i} \succeq 0 \\
& l_{i} \leq y_{i} \leq u_{i}, i=1, \ldots, m
\end{array}
$$

- $l_{i}=5.0$ square inches for all bars i
- $u_{i}=8.0$ square inches for all bars i
- mass density for steel, which is $\rho=0.736 \mathrm{e}-03$
- Young's modulus for steel, which is $3.0 \mathrm{e}+07$ pounds per square inch
- $\bar{\Omega}=220 \mathrm{~Hz}$
22.5.1 SDPT3

SDPT3 is the semidefinite programming software developed by "T3":

- Kim Chuan Toh of National University of Singapore
- Reha Tütünçu of Carnegie Mellon University
- Michael Todd of Cornell University

Statistics for TSDP problem run using SDPT3

Linear Inequalities	14
Semidefinite block size	6×6
CPU time (seconds):	0.8
IPM Iterations:	
Optimal Solution	
Bar 1 area (square inches)	
Bar 2 area (square inches)	8.0000
Bar 3 area (square inches)	7.0000
Bar 4 area (square inches)	6.94971
Bar 5 area (square inches)	5.0000
Bar 6 area (square inches)	6.9411
Bar 7 area (square inches)	7.1797

5 feet

6 feet

22.6 More Computation

Slide 96
A truss tower used for computational experiments. This version of the tower has 40 bars and 32 degrees of freedom.

SLide 97
Computational results using SDPT3 for truss frequency optimization.

Semidefinite Block	Linear Inequalities	Scalar Variables	IPM Iterations	CPU time (sec)
12×12	30	15	17	1.17
20×20	50	25	20	1.49
32×32	80	40	21	1.88
48×48	120	60	20	2.73
60×60	150	75	20	3.76
80×80	200	100	23	5.34
120×120	300	150	23	9.46

22.6.1 Frontier Solutions

Lower bound on Threshold Frequency Ω versus Weight of Structure

