Introduction to Semidefinite Programming (SDP)

Robert M. Freund and Brian Anthony with assistance from David Craft

May 4-6, 2004

1 Outline

- Alternate View of Linear Programming
- Facts about Symmetric and Semidefinite Matrices
- SDP
- SDP Duality
- Examples of SDP
 - Combinatorial Optimization: MAXCUT
 - -Convex Optimization: Quadratic Constraints, Eigenvalue Problems, $\log \det(X)$ problems
- Interior-Point Methods for SDP
- Application: Truss Vibration Dynamics via SDP

2 Linear Programming

2.1 Alternative Perspective

$$LP$$
: minimize $c \cdot x$

s.t.
$$a_i \cdot x = b_i, \quad i = 1, \dots, m$$

$$x \in \Re^n_+$$
.

 $\begin{array}{ll} "c \cdot x" \text{ means the linear function } "\sum_{j=1}^{n} c_j x_j" \\ \Re^n_+ := \{x \in \Re^n \mid x \geq 0\} \text{ is the nonnegative orthant.} \\ \Re^n_+ \text{ is a convex cone.} \\ K \text{ is convex cone if } x, w \in K \text{ and } \alpha, \beta \geq 0 \implies \alpha x + \beta w \in K. \end{array}$

LP: minimize $c \cdot x$

s.t. $a_i \cdot x = b_i, \quad i = 1, \dots, m$

 $x \in \Re^n_+.$

"Minimize the linear function $c \cdot x$, subject to the condition that x must solve m given equations $a_i \cdot x = b_i, i = 1, ..., m$, and that x must lie in the convex cone $K = \Re_+^n$."

2.1.1 LP Dual Problem

SLIDE 4

$$LD: \text{ maximize } \sum_{\substack{i=1\\m}m}^{m} y_i b_i$$

s.t.
$$\sum_{\substack{i=1\\s \in \Re_+^n}}^{m} y_i a_i + s = c$$

SLIDE 1

For feasible solutions x of LP and (y, s) of LD, the duality gap is simply

$$c \cdot x - \sum_{i=1}^{m} y_i b_i = \left(c - \sum_{i=1}^{m} y_i a_i\right) \cdot x = s \cdot x \ge 0$$

If LP and LD are feasible, then there exists x^* and (y^*, s^*) feasible for the primal and dual, respectively, for which

$$c \cdot x^* - \sum_{i=1}^m y_i^* b_i = s^* \cdot x^* = 0$$

3 Facts about the Semidefinite Cone

If X is an $n \times n$ matrix, then X is a symmetric positive semidefinite (SPSD) matrix if $X = X^T$ and

$$v^T X v \ge 0$$
 for any $v \in \Re^n$

If X is an $n \times n$ matrix, then X is a symmetric positive definite (SPD) matrix if $X = X^T$ and

$$v^T X v > 0$$
 for any $v \in \Re^n, v \neq 0$

Facts about the Semidefinite Cone 4

 S^n denotes the set of symmetric $n \times n$ matrices S^n_+ denotes the set of (SPSD) $n \times n$ matrices. S_{++}^n denotes the set of (SPD) $n \times n$ matrices. Let $X, Y \in S^n$. SLIDE 8 " $X \succeq 0$ " denotes that X is SPSD " $X \succeq Y$ " denotes that $X - Y \succeq 0$ " $X \succ 0$ " to denote that X is SPD, etc. **Remark:** $S^n_+ = \{X \in S^n \mid X \succeq 0\}$ is a convex cone.

$\mathbf{5}$ Facts about Eigenvalues and Eigenvectors

If M is a square $n \times n$ matrix, then λ is an eigenvalue of M with corresponding eigenvector q if

 $Mq = \lambda q$ and $q \neq 0$.

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ enumerate the eigenvalues of M.

6 Facts about Eigenvalues and Eigenvectors

The corresponding eigenvectors q^1, q^2, \ldots, q^n of M can be chosen so that they are orthonormal, namely

 $\left(q^{i}\right)^{T}\left(q^{j}\right) = 0 \text{ for } i \neq j, \text{ and } \left(q^{i}\right)^{T}\left(q^{i}\right) = 1$

SLIDE 5

SLIDE 6

SLIDE 7

SLIDE 9

Define:

$$Q := \left[q^1 \ q^2 \ \cdots \ q^n \right]$$

Then Q is an $orthonormal \mbox{ matrix:}$

$$Q^T Q = I$$
, equivalently $Q^T = Q^{-1}$

 $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of M q^1, q^2, \ldots, q^n are the corresponding orthonormal eigenvectors of M

$$Q := \begin{bmatrix} q^1 & q^2 & \cdots & q^n \end{bmatrix}$$
$$Q^T Q = I, \quad \text{equivalently} \quad Q^T = Q^{-1}$$
$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \end{pmatrix}$$

Define D:

 $D := \begin{pmatrix} \lambda_1 & 0 & & 0 \\ 0 & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} \ .$

Property: $M = QDQ^T$.

The decomposition of M into $M = QDQ^T$ is called its *eigendecomposition*.

7 Facts about Symmetric Matrices

- If $X \in S^n$, then $X = QDQ^T$ for some orthonormal matrix Q and some diagonal matrix D. The columns of Q form a set of n orthogonal eigenvectors of X, whose eigenvalues are the corresponding entries of the diagonal matrix D.
- $X \succeq 0$ if and only if $X = QDQ^T$ where the eigenvalues (i.e., the diagonal entries of D) are all nonnegative.
- $X \succ 0$ if and only if $X = QDQ^T$ where the eigenvalues (i.e., the diagonal entries of D) are all positive.
- If M is symmetric, then

$$\det(M) = \prod_{j=1}^{n} \lambda_j$$

• Consider the matrix M defined as follows:

$$M = \begin{pmatrix} P & v \\ v^T & d \end{pmatrix},$$

where $P \succ 0$, v is a vector, and d is a scalar. Then $M \succeq 0$ if and only if $d - v^T P^{-1} v \ge 0$.

- For a given column vector a, the matrix $X := aa^T$ is SPSD, i.e., $X = aa^T \succeq 0$.
- If $M \succeq 0$, then there is a matrix N for which $M = N^T N$. To see this, simply take $N = D^{\frac{1}{2}}Q^T$.

SLIDE 12

SLIDE 11

SLIDE 13

SLIDE 14

SDP: minimize $C \bullet X$

8.1.2 Linear Function of X

Think about X

Let $X \in S^n$. Think of X as:

Semidefinite Programming

• an object (a vector) in the space S^n .

• an array of n^2 components of the form (x_{11}, \ldots, x_{nn})

All three different equivalent ways of looking at X will be useful.

8

8.1 8.1.1

SDP

• a matrix

Let $X \in S^n$. What will a linear function of X look like?

If C(X) is a linear function of X, then C(X) can be written as $C \bullet X$, where

 $C \bullet X := \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}.$

There is no loss of generality in assuming that the matrix C is also symmetric.

8.1.3 Definition of SDP

s.t. $A_i \bullet X = b_i$, $i = 1, \ldots, m$, $X \succeq 0$,

" $X \succeq 0$ " is the same as " $X \in S^n_+$ "

The data for SDP consists of the symmetric matrix C (which is the data for the objective function) and the m symmetric matrices A_1, \ldots, A_m , and the m-vector b, which form the m linear equations.

8.1.4 Example

 $A_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix}, \ b = \begin{pmatrix} 11 \\ 19 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix},$

The variable X will be the 3×3 symmetric matrix:

 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix},$

SLIDE 16

SLIDE 17

SLIDE 18

$$SDP: \text{ minimize} \\ \text{s.t.} \qquad \begin{array}{l} x_{11} + 4x_{12} + 6x_{13} + 9x_{22} + 0x_{23} + 7x_{33} \\ x_{11} + 0x_{12} + 2x_{13} + 3x_{22} + 14x_{23} + 5x_{33} &= 11 \\ 0x_{11} + 4x_{12} + 16x_{13} + 6x_{22} + 0x_{23} + 4x_{33} &= 19 \end{array}$$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \succeq 0.$$

$$SDP: \text{ minimize} \qquad x_{11} + 4x_{12} + 6x_{13} + 9x_{22} + 0x_{23} + 7x_{33} \\ \text{s.t.} \qquad x_{11} + 0x_{12} + 2x_{13} + 3x_{22} + 14x_{23} + 5x_{33} &= 11 \\ 0x_{11} + 4x_{12} + 16x_{13} + 6x_{22} + 0x_{23} + 4x_{33} &= 19 \end{pmatrix}$$

$$\left(\begin{array}{c} x_{11} & x_{12} & x_{13} \\ x_{11} + 0x_{12} + 2x_{13} + 3x_{22} + 14x_{23} + 5x_{33} &= 11 \\ 0x_{11} + 4x_{12} + 16x_{13} + 6x_{22} + 0x_{23} + 4x_{33} &= 19 \end{array} \right)$$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \succeq 0.$$

It may be helpful to think of " $X \succeq 0$ " as stating that each of the n eigenvalues of X must be nonnegative.

 $LP: \quad \begin{array}{ll} \text{minimize} & c \cdot x \\ & \text{s.t.} & a_i \cdot x = b_i, \quad i = 1, \dots, m \\ & x \in \Re^n_+. \end{array}$

8.1.5
$$LP \subset SDP$$

Slide 21

SLIDE 22

SLIDE 20

Define:

$$A_{i} = \begin{pmatrix} a_{i1} & 0 & \dots & 0 \\ 0 & a_{i2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{in} \end{pmatrix}, \quad i = 1, \dots, m, \text{ and } C = \begin{pmatrix} c_{1} & 0 & \dots & 0 \\ 0 & c_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{in} \end{pmatrix}.$$

$$SDP: \quad \text{minimize} \quad C \bullet X$$

$$\text{s.t.} \qquad A_{i} \bullet X = b_{i} \quad , i = 1, \dots, m,$$

$$X_{ij} = 0, \quad i = 1, \dots, m, \quad j = i + 1, \dots, n,$$

$$X = \begin{pmatrix} x_{1} & 0 & \dots & 0 \\ 0 & x_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x_{n} \end{pmatrix} \succeq 0,$$

9 SDP Duality

 $\begin{array}{lll} SDD: & \mbox{maximize} & \sum\limits_{i=1}^m y_i b_i \\ & \mbox{s.t.} & & \sum\limits_{i=1}^m y_i A_i + S = C \\ & & S \succeq 0. \end{array}$

Notice

$$S = C - \sum_{i=1}^{m} y_i A_i \succeq 0$$

SDP Duality 10

and so equivalently:

$$SDD$$
: maximize $\sum_{i=1}^{m} y_i b_i$
s.t. $C - \sum_{i=1}^{m} y_i A_i \succeq 0$

10.1 Example

$$A_{1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix}, \ b = \begin{pmatrix} 11 \\ 19 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix},$$

SDD: maximize $11y_1 + 19y_2$

s.t.

s.t.

s.t.

$$y_1 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix} + y_2 \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix} + S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix}$$
$$S \succeq 0$$

SDD: maximize $11y_1 + 19y_2$

 $S\succeq 0$

$$y_1 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix} + y_2 \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix} + S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix}$$

is the same as:

SDD : maximize

 $11y_1 + 19y_2$

Weak Duality 10.2

Weak Duality Theorem: Given a feasible solution X of SDP and a feasible solution (y, S) of SDD, the duality gap is

$$C \bullet X - \sum_{i=1}^m y_i b_i = S \bullet X \ge 0$$
.

If

$$C \bullet X - \sum_{i=1}^m y_i b_i = 0 ,$$

then X and (y, S) are each optimal solutions to SDP and SDD, respectively, and furthermore, SX = 0.

SLIDE 23

SLIDE 24

SLIDE 26

10.3 Strong Duality

Strong Duality Theorem: Let z_P^* and z_D^* denote the optimal objective function values of SDP and SDD, respectively. Suppose that there exists a feasible solution \hat{X} of SDP such that $\hat{X} \succ 0$, and that there exists a feasible solution (\hat{y}, \hat{S}) of SDD such that $\hat{S} \succ 0$. Then both SDP and SDD attain their optimal values, and

 $z_P^*=z_D^*$.

11 Some Important Weaknesses of SDP

- There may be a finite or infinite duality gap.
- The primal and/or dual may or may not attain their optima.
- Both programs will attain their common optimal value if both programs have feasible solutions that are SPD.
- There is no finite algorithm for solving *SDP*.
- There is a simplex algorithm, but it is not a finite algorithm. There is no direct analog of a "basic feasible solution" for *SDP*.

12 SDP in Combinatorial Optimization

12.0.1 The MAX CUT Problem

G is an undirected graph with nodes $N = \{1, \ldots, n\}$ and edge set *E*. Let $w_{ij} = w_{ji}$ be the weight on edge (i, j), for $(i, j) \in E$. We assume that $w_{ij} \ge 0$ for all $(i, j) \in E$. The MAX CUT problem is to determine a subset *S* of the nodes *N* for which the sum of the weights of the edges that cross from *S* to its complement \overline{S} is maximized

 $(\bar{S} := N \setminus S).$

12.0.2 Formulations

The MAX CUT problem is to determine a subset S of the nodes N for which the sum of the weights w_{ij} of the edges that cross from S to its complement \overline{S} is maximized $(\overline{S} := N \setminus S)$.

Let $x_j = 1$ for $j \in S$ and $x_j = -1$ for $j \in \overline{S}$.

$$\begin{aligned} MAXCUT: & \text{maximize}_x \quad \frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij}(1-x_ix_j) \\ & \text{s.t.} \quad x_j \in \{-1,1\}, \ j=1,\ldots,n. \end{aligned}$$

SLIDE 31
$$\begin{aligned} MAXCUT: & \text{maximize}_x \quad \frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij}(1-x_ix_j) \end{aligned}$$

s.t. $x_j \in \{-1, 1\}, j = 1, \dots, n.$

Slide 29

SLIDE 27

SLIDE 28

 Let

$$Y = xx^T$$
 .

Then

$$Y_{ij} = x_i x_j$$
 $i = 1, ..., n, j = 1, ..., n.$

SLIDE 32

Also let W be the matrix whose $(i, j)^{\text{th}}$ element is w_{ij} for i = 1, ..., n and j = 1, ..., n. Then

$$\begin{aligned} MAXCUT: & \text{maximize}_{Y,x} & \frac{1}{4}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} - W \bullet Y \\ & \text{s.t.} & x_j \in \{-1,1\}, \ j = 1, \dots, n \\ & Y = xx^T. \end{aligned}$$

$$\begin{aligned} \text{SLIDE 33} \\ MAXCUT: & \text{maximize}_{Y,x} & \frac{1}{4}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} - W \bullet Y \end{aligned}$$

$$\begin{aligned} MAXCUT: \quad \text{maximize}_{Y,x} \quad & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} - W \bullet Y \\ \text{s.t.} \quad & x_j \in \{-1,1\}, \ \ j = 1, \dots, n \\ & Y = xx^T. \end{aligned}$$

The first set of constraints are equivalent to $Y_{jj} = 1, j = 1, ..., n$.

$$MAXCUT: \text{ maximize}_{Y,x} \quad \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} - W \bullet Y$$

s.t.
$$Y_{jj} = 1, \quad j = 1, \dots, n$$
$$Y = xx^{T}.$$

SLIDE 35

SLIDE 36

SLIDE 34

$$MAXCUT: \text{ maximize}_{Y,x} \quad \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} - W \bullet Y$$

s.t.
$$Y_{jj} = 1, \quad j = 1, \dots, n$$
$$Y = xx^{T}.$$

Notice that the matrix $Y = xx^T$ is a rank-1 SPSD matrix. We *relax* this condition by removing the rank-1 restriction:

$$\begin{aligned} RELAX: \quad \text{maximize}_Y \quad & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij} - W \bullet Y \\ \text{s.t.} \qquad & Y_{jj} = 1, \quad j = 1, \dots, n \\ & Y \succ 0. \end{aligned}$$

It is therefore easy to see that RELAX provides an upper bound on MAXCUT, i.e.,

$$MAXCUT \leq RELAX$$

SLIDE 37

$$RELAX: \text{ maximize}_Y \quad \frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij} - W \bullet Y$$

s.t.
$$Y_{jj} = 1, \quad j = 1, \dots, n$$
$$Y \succeq 0.$$

As it turns out, one can also prove without too much effort that:

$$0.87856 \ RELAX \le MAXCUT \le RELAX.$$

SLIDE 38

This is an impressive result, in that it states that the value of the semidefinite relaxation is guaranteed to be no more than 12.2% higher than the value of NP-hard problem MAX CUT.

13 SDP for Convex QCQP

A convex quadratically constrained quadratic program (QCQP) is a problem of the form: SLIDE 39 $\,$

$$\begin{array}{rl} QCQP: & \text{minimize} & x^TQ_0x + q_0^Tx + c_0 \\ & x \\ & \text{s.t.} & x^TQ_ix + q_i^Tx + c_i \leq 0 \quad , i = 1, \dots, m, \end{array}$$

where the $Q_0 \succeq 0$ and $Q_i \succeq 0$, i = 1, ..., m. This is the same as:

$$QCQP: \text{ minimize } \theta$$

$$x, \theta$$
s.t.
$$x^{T}Q_{0}x + q_{0}^{T}x + c_{0} - \theta \leq 0$$

$$x^{T}Q_{i}x + q_{i}^{T}x + c_{i} \leq 0 \quad , i = 1, \dots, m.$$
SLIDE 40

 $QCQP: \quad \begin{array}{ll} \text{minimize} & \theta \\ & x, \theta \\ & \text{s.t.} & x^T Q_0 x + q_0^T x + c_0 - \theta \leq 0 \\ & x^T Q_i x + q_i^T x + c_i \leq 0 \quad , i = 1, \dots, m. \end{array}$

Factor each Q_i into

$$Q_i = M_i^T M_i$$

and note the equivalence:

$$\begin{pmatrix} I & M_i x \\ x^T M_i^T & -c_i - q_i^T x \end{pmatrix} \succeq 0 \quad \Longleftrightarrow \quad x^T Q_i x + q_i^T x + c_i \le 0.$$

SLIDE 41

$$\begin{array}{lll} QCQP: & \mbox{minimize} & \theta & & \\ & x,\theta & & \\ & \mbox{s.t.} & x^TQ_0x+q_0^Tx+c_0-\theta \leq 0 & & \\ & x^TQ_ix+q_i^Tx+c_i \leq 0 & , i=1,\ldots,m. \end{array}$$

Re-write QCQP as:

$$\begin{array}{rcl} QCQP: & \underset{x,\theta}{\text{minimize}} & \theta \\ & \text{s.t.} & \left(\begin{array}{cc} I & M_0 x \\ x^T M_0^T & -c_0 - q_0^T x + \theta \end{array} \right) \succeq 0 \\ & \left(\begin{array}{cc} I & M_i x \\ x^T M_i^T & -c_i - q_i^T x \end{array} \right) \succeq 0 \quad , i = 1, \ldots, m. \end{array}$$

14 SDP for SOCP

14.1 Second-Order Cone Optimization

Second-order cone optimization:

SOCP: $\min_{x} c^{T}x$ s.t. Ax = b $\|Q_{i}x + d_{i}\| \le (g_{i}^{T}x + h_{i})$, i = 1, ..., k. := $\sqrt{v^{T}v}$ SLIDE 43 SOCP: $\min_{x} c^{T}x$

Recall $||v|| := \sqrt{v^T v}$

DCP: $\min_x c^T x$ s.t. Ax = b

$$||Q_i x + d_i|| \le (g_i^T x + h_i)$$
, $i = 1, ..., k$.

Property:

$$\|Qx+d\| \le \left(g^Tx+h\right) \iff \begin{pmatrix} (g^Tx+h)I & (Qx+d)\\ (Qx+d)^T & g^Tx+h \end{pmatrix} \succeq 0 .$$

This property is a direct consequence of the fact that

$$M = \begin{pmatrix} P & v \\ v^T & d \end{pmatrix} \succeq 0 \iff d - v^T P^{-1} v \ge 0 .$$

SLIDE 44

SOCP : $\min_x c^T x$ s.t. Ax = b

$$||Q_i x + d_i|| \le (g_i^T x + h_i)$$
, $i = 1, ..., k$.

Re-write as:

$$\begin{split} \text{SDPSOCP}: & \min_x \quad c^T x \\ & \text{s.t.} \quad & Ax = b \\ & \quad \left(\begin{matrix} (g_i^T x + h_i)I & (Q_i x + d_i) \\ (Q_i x + d_i)^T & g_i^T x + h_i \end{matrix} \right) \succeq 0 \ , \quad i = 1, \dots, k \ . \end{split}$$

15 Eigenvalue Optimization

We are given symmetric matrices B and $A_i, i = 1, ..., k$ Choose weights $w_1, ..., w_k$ to create a new matrix S:

$$S := B - \sum_{i=1}^{k} w_i A_i$$

There might be restrictions on the weights $Gw \leq d$. The typical goal is for S is to have some nice property such as:

- $\lambda_{\min}(S)$ is maximized
- $\lambda_{\max}(S)$ is minimized
- $\lambda_{\max}(S) \lambda_{\min}(S)$ is minimized

15.1 Some Useful Relationships

Property: $M \succeq tI$ if and only if $\lambda_{\min}(M) \ge t$.

Proof: $M = QDQ^T$. Define

$$\begin{split} R &= M - tI = QDQ^T - tI = Q(D - tI)Q^T \ . \\ M \succeq tI \iff R \succeq 0 \iff D - tI \succeq 0 \iff \lambda_{\min}(M) \ge t \end{split}$$

q.e.d.

Property: $M \preceq tI$ if and only if $\lambda_{\max}(M) \leq t$.

15.2 Design Problem

Consider the design problem:

$$EOP: \quad \begin{array}{l} \text{minimize} \quad \lambda_{\max}(S) - \lambda_{\min}(S) \\ w, S \\ \text{s.t.} \quad S = B - \sum_{i=1}^{k} w_i A_i \\ Gw \le d \ . \end{array}$$

SLIDE 48

SLIDE 47

SLIDE 46

$$\begin{split} EOP: & \min & \min \\ & w, S \\ & \text{s.t.} \\ & S = B - \sum_{i=1}^k w_i A_i \\ & Gw \leq d \;. \end{split}$$

This is equivalent to:

$$EOP: \quad \begin{array}{ll} \text{minimize} & \mu - \lambda \\ & w, S, \mu, \lambda \end{array}$$

s.t. $S = B - \sum_{i=1}^{k} w_i A_i$
 $Gw \leq d$
 $\lambda I \leq S \leq \mu I.$

16 The Logarithmic Barrier Function for SPD Matrices

Let $X \succeq 0$, equivalently $X \in S^n_+$. X will have *n* nonnegative eigenvalues, say $\lambda_1(X), \ldots, \lambda_n(X) \ge 0$ (possibly counting multiplicities).

$$\partial S^n_+ = \{ X \in S^n \mid \lambda_j(X) \ge 0, j = 1, \dots, n, \\ \text{and } \lambda_j(X) = 0 \text{ for some } j \in \{1, \dots, n\} \}.$$

SLIDE 49

$$\partial S^n_+ = \{ X \in S^n \mid \lambda_j(X) \ge 0, j = 1, \dots, n,$$

and $\lambda_j(X) = 0$ for some $j \in \{1, \dots, n\} \}.$

A natural barrier function is:

$$B(X) := -\sum_{j=1}^{n} \ln(\lambda_i(X)) = -\ln\left(\prod_{j=1}^{n} \lambda_i(X)\right) = -\ln(\det(X)).$$

This function is called the log-determinant function or the logarithmic barrier function for the semidefinite cone.

SLIDE 51

$$B(X) := -\sum_{j=1}^{n} \ln(\lambda_i(X)) = -\ln\left(\prod_{j=1}^{n} \lambda_i(X)\right) = -\ln(\det(X))$$

Quadratic Taylor expansion at $X = \bar{X}$:

$$B(\bar{X} + \alpha D) \approx B(\bar{X}) + \alpha \bar{X}^{-1} \bullet D + \frac{1}{2} \alpha^2 \left(\bar{X}^{-\frac{1}{2}} D \bar{X}^{-\frac{1}{2}} \right) \bullet \left(\bar{X}^{-\frac{1}{2}} D \bar{X}^{-\frac{1}{2}} \right) \ .$$

B(X) has the same remarkable properties in the context of interior-point methods for SDP as the barrier function $-\sum_{j=1}^{n} \ln(x_j)$ does in the context of linear optimization.

The SDP Analytic Center Problem 17

Given a system:

$$\sum_{i=1}^m y_i A_i \preceq C \; ,$$

the analytic center is the solution (\hat{y}, \hat{S}) of:

 $\sum_{i=1}^{m} y_i A_i + S = C$

 $S\succ 0$.

This is the same as

Let (\hat{y}, \hat{S}) be the analytic center. There are easy-to-construct ellipsoids E_{IN} and E_{OUT} , both centered at \hat{y} and where E_{OUT} is a scaled version of E_{IN} with scale factor n, with the property that:

s.t.

$$E_{\rm IN} \subset P \subset E_{\rm OUT}$$

SLIDE 55

18 Minimum Volume Circumscription

 $R \succ 0$ and $z \in \Re^n$ define an ellipsoid in $\Re^n :$

$$E_{R,z} := \{ y \mid (y-z)^T R(y-z) \le 1 \}.$$

The volume of $E_{R,z}$ is proportional to $\sqrt{\det(R^{-1})}$. SLIDE 57 Given k points c_1, \ldots, c_k , we would like to find an ellipsoid circumscribing c_1, \ldots, c_k that has minimum volume:

SLIDE 58

 $\begin{array}{rll} MCP: & \text{minimize} & \text{vol} \ (E_{R,z}) \\ & R,z \\ & \text{s.t.} & c_i \in E_{R,z}, \ i=1,\ldots,k \end{array}$

which is equivalent to:

$$\begin{array}{ll} MCP: & \min initial minimize & -\ln(\det(R)) \\ & R, z \\ & \text{s.t.} & (c_i - z)^T R(c_i - z) \leq 1, \quad i = 1, \dots, k \\ & R \succ 0 \end{array}$$
SLIDE 59

$$MCP: \begin{array}{ll} \text{minimize} & -\ln(\det(R)) \\ R, z \\ \text{s.t.} & (c_i - z)^T R(c_i - z) \leq 1, \quad i = 1, \dots, k \\ R \succ 0 \end{array}$$

Factor $R = M^2$ where $M \succ 0$ (that is, M is a square root of R):

$$MCP: \quad \begin{array}{ll} \text{minimize} & -\ln(\det(M^2)) \\ M, z \\ \text{s.t.} & (c_i - z)^T M^T M(c_i - z) \leq 1, \quad i = 1, \dots, k, \\ M \succ 0 \end{array}$$

$$\begin{array}{rl} MCP: & \text{minimize} & -\ln(\det(M^2)) \\ & M,z \\ & \text{s.t.} & (c_i-z)^T M^T M(c_i-z) \leq 1, \quad i=1,\ldots,k, \\ & M \succ 0. \end{array}$$

Notice the equivalence:

$$\begin{pmatrix} I & Mc_i - Mz \\ (Mc_i - Mz)^T & 1 \end{pmatrix} \succeq 0 \iff (c_i - z)^T M^T M(c_i - z) \le 1$$

Re-write *MCP*:
MCP: minimize $-2 \ln(\det(M))$

$$\begin{array}{ll} \text{minimize} & -2\ln(\det(M)) \\ M,z \\ \text{s.t.} & \left(\begin{array}{cc} I & Mc_i - Mz \\ (Mc_i - Mz)^T & 1 \end{array} \right) \succeq 0, \quad i = 1, \dots, k, \\ M \succ 0. \end{array}$$

$$\begin{array}{ll} MCP: & \mbox{minimize} & -2\ln(\det(M)) \\ & M,z \\ & \mbox{s.t.} & \left(\begin{array}{cc} I & Mc_i - Mz \\ (Mc_i - Mz)^T & 1 \end{array} \right) \succeq 0, \ i = 1, \dots, k, \\ & M \succ 0. \end{array}$$

Substitute y = Mz:

$$MCP: \text{ minimize } -2\ln(\det(M))$$

$$M, y$$
s.t.
$$\begin{pmatrix} I & Mc_i - y \\ (Mc_i - y)^T & 1 \end{pmatrix} \succeq 0, \quad i = 1, \dots, k,$$

$$M \succ 0.$$
SLIDE 62

$$\begin{array}{rll} MCP: & \min i mize & -2\ln(\det(M)) & & \\ & M,y & & \\ & \text{s.t.} & \left(\begin{array}{cc} I & Mc_i - y \\ (Mc_i - y)^T & 1 \end{array} \right) \succeq 0, \quad i = 1, \dots, k, \\ & M \succ 0. \end{array}$$

This problem is very easy to solve.

Recover the original solution R, z by computing:

$$R = M^2$$
 and $z = M^{-1}y$.

19 SDP in Control Theory

SLIDE 63

SLIDE 61

A variety of control and system problems can be cast and solved as instances of SDP. This topic is beyond the scope of this lecturer's expertise.

20 Interior-point Methods for SDP

20.1 Primal and Dual SDP

 $\begin{array}{lll} SDP: & \text{minimize} & C \bullet X \\ & \text{s.t.} & A_i \bullet X = b_i &, i = 1, \dots, m, \\ & X \succeq 0 \end{array}$

and

$$SDD: \text{ maximize } \sum_{\substack{i=1\\i=1}}^{m} y_i b_i$$

s.t.
$$\sum_{\substack{i=1\\S \succeq 0}}^{m} y_i A_i + S = C$$

If X and (y, S) are feasible for the primal and the dual, the duality gap is:

$$C \bullet X - \sum_{i=1}^{m} y_i b_i = S \bullet X \ge 0$$
.

Also,

 $S \bullet X = 0 \ \iff \ SX = 0 \ .$

$$B(X) = -\sum_{j=1}^{n} \ln(\lambda_i(X)) = -\ln\left(\prod_{j=1}^{n} \lambda_i(X)\right) = -\ln(\det(X))$$

Consider:

$$BSDP(\mu)$$
: minimize $C \bullet X - \mu \ln(\det(X))$

s.t.
$$A_i \bullet X = b_i$$
, $i = 1, \dots, m$,

 $X \succ 0.$

Let $f_{\mu}(X)$ denote the objective function of $BSDP(\mu)$. Then:

$$\begin{split} -\nabla f_{\mu}(X) &= C - \mu X^{-1} \\ \text{SLIDE 66} \\ BSDP(\mu): \quad \text{minimize} \quad C \bullet X - \mu \ln(\det(X)) \\ \text{s.t.} \qquad A_i \bullet X = b_i \quad, i = 1, \dots, m, \end{split}$$

s.t.
$$A_i \bullet X = b_i$$
, $i = 1, \dots,$
 $X \succ 0.$

 $\nabla f_{\mu}(X) = C - \mu X^{-1}$ Karush-Kuhn-Tucker conditions for $BSDP(\mu)$ are:

$$\begin{cases} A_i \bullet X = b_i \quad , i = 1, \dots, m, \\ X \succ 0, \\ C - \mu X^{-1} = \sum_{i=1}^m y_i A_i. \end{cases}$$
 SLIDE 67

SLIDE 65

$$\begin{cases} A_i \bullet X = b_i \quad , i = 1, \dots, m, \\ X \succ 0, \\ C - \mu X^{-1} = \sum_{i=1}^m y_i A_i. \end{cases}$$
$$S = \mu X^{-1} ,$$

Define

which implies

and rewrite KKT conditions as:

$$XS = \mu I \ ,$$

SLIDE 68

$$\begin{cases}
A_i \bullet X = b_i , i = 1, \dots, m, \quad X \succ 0 \\
\sum_{i=1}^{m} y_i A_i + S = C \\
XS = \mu I.
\end{cases}$$
SLIDE 69
$$\begin{cases}
A_i \bullet X = b_i , i = 1, \dots, m, \quad X \succ 0 \\
\sum_{i=1}^{m} y_i A_i + S = C \\
XS = \mu I.
\end{cases}$$

If (X, y, S) is a solution of this system, then X is feasible for SDP, (y, S) is feasible for SDD, and the resulting duality gap is

$$S \bullet X = \sum_{i=1}^{n} \sum_{j=1}^{n} S_{ij} X_{ij} = \sum_{j=1}^{n} (SX)_{jj} = \sum_{j=1}^{n} (\mu I)_{jj} = n\mu.$$

SLIDE 70
$$\begin{cases} A_i \bullet X = b_i \ , i = 1, \dots, m, \ X \succ 0\\ \sum_{\substack{i=1\\XS = \mu I.}}^{m} y_i A_i + S = C\\ XS = \mu I. \end{cases}$$

If (X, y, S) is a solution of this system, then X is feasible for SDP, (y, S) is feasible for SDD, the duality gap is

$$S \bullet X = n\mu.$$
 SLIDE 71

This suggests that we try solving $BSDP(\mu)$ for a variety of values of μ as $\mu \to 0$. Interior-point methods for SDP are very similar to those for linear optimization, in that they use Newton's method to solve the KKT system as $\mu \to 0$.

21 Website for SDP

A good website for semidefinite programming is:

http://www-user.tu-chemnitz.de/ helmberg/semidef.html.

22 Optimization of Truss Vibration

22.1 Motivation

- The design and analysis of trusses are found in a wide variety of scientific applications including engineering mechanics, structural engineering, MEMS, and biomedical engineering.
- As finite approximations to solid structures, a truss is the fundamental concept of Finite Element Analysis.
- The truss problem also arises quite obviously and naturally in the design of scaffolding-based structures such as bridges, the Eiffel tower, and the skeletons for tall buildings.
- Using semidefinite programming (SDP) and the interior-point software SDPT3, we will explore an elegant and powerful technique for optimizing truss vibration dynamics.
- The problem we consider here is designing a truss such that the lowest frequency Ω at which it vibrates is above a given lower bound $\overline{\Omega}$.
- November 7, 1940, Tacoma Narrows Bridge in Tacoma, Washington

22.2 The Dynamics Model

Newton's Second Law of Motion:

 $F = m \times a$.

SLIDE 76

SLIDE 74

SLIDE 73

If the mass is pulled down, the displacement u produces a force in the spring tending to move the mass back to its equilibrium point (where u = 0). The displacement u causes an upward force $k \times u$, where k is the spring constant. We obtain from $F = m \times a$ that:

$$-ku(t) = m\ddot{u}(t)$$
 SLIDE 77

Law of Motion:

$$u(t) = \sin\left(\sqrt{\frac{k}{m}} t\right)$$
$$\omega = \sqrt{\frac{k}{m}} .$$

 $-ku(t) = m\ddot{u}(t)$

Frequency of vibration:

Law of Motion:

$$-ku(t) = m\ddot{u}(t)$$

Solution:

$$u(t) = \sin\left(\sqrt{\frac{k}{m}} t\right)$$
$$\omega = \sqrt{\frac{k}{m}}$$

For truss structure, we need multidimensional analogs for k, u(t), and m. A simple truss.

Each bar has both stiffness and mass that depend on material properties and the bar's cross-sectional area.

22.2.2 Analog of k

SLIDE 80

The spring constant k extends to the stiffness matrix of a truss. We used G to denote the stiffness matrix. Here we will use K.

$$K = G = AB^{-1}A^T$$

Each column of A, denoted as a_i , is the projection of bar i onto the degrees of freedom of the nodes that bar i meets.

$$B = \begin{pmatrix} \frac{L_1^2}{E_1 t_1} & 0\\ & \ddots\\ & 0 & \frac{L_m^2}{E_m t_m} \end{pmatrix} \quad , \quad B^{-1} = \begin{pmatrix} \frac{E_1 t_1}{L_1^2} & 0\\ & \ddots\\ & 0 & \frac{E_m t_m}{L_m^2} \end{pmatrix} \; .$$

22.2.3 Analog of m

Instead of a single displacement scalar u(t), we have N degrees of freedom, and the vector

$$u(t) = (u_1(t), \ldots, u_N(t))$$

is the vector of displacements. The mass m extends to a mass matrix ${\cal M}$

22.2.4 Laws of Motion

$$-ku(t) = m\ddot{u}(t)$$

becomes:

$$-Ku(t) = M\ddot{u}(t)$$

Both K and M are SPD matrices, and are easily computed once the truss geometry and the nodal constraints are specified. SLIDE 83

$$-Ku(t) = M\ddot{u}(t)$$

The truss structure vibration involves sine functions with frequencies

$$\omega_i = \sqrt{\lambda_i}$$

where

are the eigenvalues of

$$M^{-1}K$$

 $\lambda_1,\ldots,\lambda_N$

The threshold frequency Ω of the truss is the lowest frequency $\omega_i, i = 1, ..., N$, or equivalently, the square root of the smallest eigenvalue of $M^{-1}K$. SLIDE 84

$$-Ku(t) = M\ddot{u}(t)$$

The threshold frequency Ω of the truss is the square root of the smallest eigenvalue of $M^{-1}K.$

Lower bound constraint on the threshold frequency

 $\Omega \geq \bar{\Omega}$

Property:

$$\Omega \ge \bar{\Omega} \iff K - \bar{\Omega}^2 M \succeq 0$$
.

22.3 Truss Vibration Design

We wrote the stiffness matrix as a linear function of the volumes t_i of the bars i:

$$K = \sum_{i=1}^{m} t_i \frac{E_i}{L_i^2} (a_i) (a_i)^T ,$$

 L_i is the length of bar i

 E_i is the Young's modulus of bar i t_i is the volume of bar i.

22.4 Truss Vibration Design

Here we use y_i to represent the area of bar $i (y_i = \frac{t_i}{L_i})$

$$K = K(y) = \sum_{i=1}^{m} \left[\frac{E_i}{L_i} (a_i) (a_i)^T \right] y_i = \sum_{i=1}^{m} K_i y_i$$

where

$$K_i = \left[\frac{E_i}{L_i}(a_i)(a_i)^T\right] , \ i = 1, \dots, m$$

SLIDE 87

SLIDE 85

There are matrices M_1, \ldots, M_m for which we can write the mass matrix as a linear function of the areas y_1, \ldots, y_m :

$$M = M(y) = \sum_{i=1}^{m} M_i y_i$$

In truss vibration design, we seek to design a truss of minimum weight whose threshold frequency Ω is at least a pre-specified value $\overline{\Omega}$.

$$TSDP: \text{ minimize } \sum_{i=1}^{m} b_i y_i$$

s.t.
$$\sum_{i=1}^{m} (K_i - \bar{\Omega}^2 M_i) y_i \succeq 0$$
$$l_i \leq y_i \leq u_i \ , \ i = 1, \dots, m \ .$$

The decision variables are y_1, \ldots, y_m

 l_i, u_i are bounds on the area y_i of bar i (perhaps from the output of the static truss design model)

SLIDE 90 b_i is the length of bar *i* times the material density of bar *i*

$$TSDP: \quad \text{minimize}_{y} \quad \sum_{i=1}^{m} b_{i}y_{i}$$

s.t.
$$\sum_{i=1}^{m} (K_{i} - \bar{\Omega}^{2}M_{i})y_{i} \succeq 0$$
$$l_{i} \leq y_{i} \leq u_{i} , \ i = 1, \dots, m .$$

22.5**Computational Example**

TSDP: minimize_y $\sum_{i=1}^{m} b_i y_i$ $\sum_{i=1}^{m} (K_i - \bar{\Omega}^2 M_i) y_i \succeq 0$

 $l_i \leq y_i \leq u_i , \ i = 1, \ldots, m$.

SLIDE 91

SLIDE 88

SLIDE 89

s.t.

7.1797

Bar 7 area (square inches)

22.6 More Computation

A truss tower used for computational experiments. This version of the tower has 40 bars and 32 degrees of freedom.

Computational results using SDPT3 for truss frequency optimization.

Semidefinite	Linear	Scalar	IPM	CPU time
Block	Inequalities	Variables	Iterations	(sec)
12×12	30	15	17	1.17
20×20	50	25	20	1.49
32×32	80	40	21	1.88
48×48	120	60	20	2.73
60×60	150	75	20	3.76
80×80	200	100	23	5.34
120×120	300	150	23	9.46

22.6.1 Frontier Solutions

Lower bound on Threshold Frequency Ω versus Weight of Structure

