Effective Route Guidance
 in Traffic Networks

Lectures developed by
Andreas S. Schulz and Nicolás Stier

May 13, 2004
(C)2004 Massachusetts Institute of Technology

Outline

- Lecture 1

Route Guidance; User Equilibrium; System Optimum; User Equilibria in Networks with Capacities.

- Lecture 2

Constrained System Optimum; Dantzig-Wolfe Decomposition; Constrained Shortest Paths; Computational Results.

Review of First Lecture

No capacities	With capacities
UE unique	Set of UE may be non-convex
UE $/$ SO $\geq \alpha(\mathcal{L})$	UE $/$ SO unbounded
UE $/$ SO $\leq \alpha(\mathcal{L})$	BUE $/$ SO $\leq \alpha(\mathcal{L})$

Long Detours in SO

selfish users
optimize own travel time optimize system welfare fair, not efficient efficient, not fair fair, efficient

Long Detours in SO

SO routes 1 unit along each path: $C(\mathbf{S O})=100+3$. Unfair!

Constrained System Optimum

Technological Requirements

exact knowledge of the current position
2-way communication to a main server

Route Guidance

- SO cannot be implemented in practice due to unfairness
- UE does not take into account the global welfare

Use constrained SO instead!

- $\mathrm{CSO}=$ min total travel time
s.t. demand satisfied users are assigned to "fair" routes capacity constraints

Constrained SO: Normal Lengths

Normal lengths: a-priori belief of network

- Geographic distances
- Free-flow travel times (times in empty network)
- Travel times under UE

Notation:

- normal length of arc: ℓ_{a}
- normal length of path: $\ell_{P}=\sum_{a \in P} \ell_{a}$

Constrained SO: Definition

- Fix a tolerance $\varepsilon \geq 0$
- A path $P \in \mathcal{P}_{i}$ is valid if $\quad \ell_{P} \leq(1+\varepsilon) \times \min { }_{Q \in \mathcal{P}_{i}} \ell_{Q}$
- Definition:

$$
\mathrm{CSO}_{\varepsilon}=\min \text { total travel time }
$$

$$
\begin{array}{cc}
\text { s.t. } \sum_{P \in \mathcal{P}_{i}: P \text { valid }} f_{P}=r_{i} & \text { for all } i \\
\sum_{P \ni a} f_{P} \leq c_{a} & \text { for } a \in A \\
f_{P} \geq 0 &
\end{array}
$$

Remarks about CSO

- It is a non-linear, convex, minimization problem over a polytope (constrained min-cost multi-commodity flow problem)
- We solve it using the Frank-Wolfe algorithm:
we solve a sequence of linear programs
- No need to consider all path variables simultaneously: we use column generation

CSO Example

©2004 Massachusetts Institute of Technology

Constrained System Optimum

Computing CSO

- Each algorithm uses the next as a subroutine:

1. Frank-Wolfe algorithm: linearize using current gradient
2. Simplex algorithm to solve resulting LP
3. Column generation to handle exponentially many paths
4. Constrained Shortest Path Problem (CSPP) algorithm for pricing
5. Dijkstra's algorithm as a routine for CSPP

Frank-Wolfe Algorithm

0. Initialization: start with flow x^{0}. Set $k=0$ and $L B=-\infty$.
1. Update upper bound: set $U B=C\left(x^{k}\right)$ and $\bar{x}=x^{k}$.
2. Compute next iterate:

$$
z^{*}=\min \left\{C(\bar{x})+\nabla C(\bar{x})^{T}(x-\bar{x}): x \text { feasible }\right\}
$$

Let x^{*} be the optimal flow.
3. Solve the line-search problem and set $x^{k+1}=\bar{x}+\bar{\alpha}\left(x^{*}-\bar{x}\right)$.
4. Update lower bound: set $L B=\max \left\{L B, z^{*}\right\}$.
5. Check stopping criteria: if $|U B-L B| \leq$ tolerance, STOP! Otherwise, set $k=k+1$ and go to step 1 .

Linear Problem and Column Generation II

- For each demand i, let σ_{i} be the dual variable corresponding to (1)
- For each arc a, let $\pi_{a} \geq 0$ be the dual variable corresponding to (2)
- Solution optimal in LP $\Leftrightarrow \sum_{a \in P}\left(t_{a}+\pi_{a}\right) \geq \sigma_{i} \quad \forall$ valid $P \in \mathcal{P}_{i}$
- The Pricing Problem:

For every commodity i, either find a valid path in \mathcal{P}_{i} with modified cost less than σ_{i} or assert that no such path exists.

Can be solved as a "Constrained Shortest Path Problem" !

Observations for Solving the LP

- Empirically, very advantageous to add as many new columns to restricted master problem as possible
\Rightarrow Add all paths that price favorably until we run out of space
\Rightarrow Non-basic variables removed when their slots are needed for new candidate paths
- We observed a reduction in computation time by factors of about 50, compared to always adding a single column and removing another one

The Pricing Problem

1. Frank-Wolfe algorithm: linearize using current gradient
2. Simplex algorithm to solve resulting LP
3. Column generation to handle exponentially many paths
4. Constrained Shortest Path Problem (CSPP) algorithm for pricing
5. Dijkstra's algorithm as a routine for CSPP

Shortest Path Problem

Optimality Conditions

The distance labels d are shortest path distances iff

$$
d(j) \leq d(i)+t_{i j} \quad \forall(i, j) \in A
$$

Dijkstra's Algorithm: Main

This routine computes shortest paths from node 1 to all other nodes:

```
\(S:=\{1\} ; T:=V \backslash\{1\} ;\)
\(d(1):=0 ; d(j):=\infty\) for \(j=2,3, \ldots, n\);
update(1);
while \(S \neq V\) do
    // find minimum temporary labeled node and update it
    \(i:=\operatorname{argmin}\{d(j): j \in T\} ;\)
    \(S:=S \cup\{i\} ; T:=T \backslash\{i\} ;\)
    update( \(i\) );
```


Dijkstra's Algorithm: Update

Given a label $d(i)$ for node i, Update (i) improves the labels of i 's neighbors:

Procedure Update (i)
for each $(i, j) \in A$ do if $d(j)>d(i)+t_{i j}$ then $d(j):=d(i)+t_{i j} ;$ $\operatorname{pred}(j):=i$;

Shortest Path Example

Constrained Shortest Path

Constrained Shortest Path Example

Find the fastest path from node 1 to node 6 with a length of at most 10

Labels

- A label $d(j)$ is now a tuple $d(j)=\left(d_{t}(j), d_{\ell}(j)\right)$
- $d_{t}(j)$ is the travel time
- $d_{\ell}(j)$ the length of a path from node 1 to j
- A node may have several labels at the same time
- A label $d(j)$ dominates $d^{\prime}(j)$ iff $d_{t}(j) \leq d_{t}^{\prime}(j)$ and $d_{\ell}(j) \leq d_{\ell}^{\prime}(j)$.
- In the algorithm, every node j has a set $T(j)$ of temporary labels and a set $S(j)$ of permanent labels
- Let T and S be the sets of all temporary and permanent labels, resp.

Update

Given a label $d(i)$ for node i, Update improves the labels of i 's neighbors:

Procedure Update(node i, label $d(i)$)
if $d_{t}(i) \geq$ min. time of a feasible path from node 1 to n so far return;
for each $(i, j) \in A$ do
$d^{\text {new }}(j):=d(i)+\left(t_{i j}, \ell_{i j}\right) ; \quad / /$ new label for j
if $d_{\ell}^{\text {new }}(j) \leq L$ and $d^{\text {new }}$ is not dominated by other labels in j add $d^{\text {new }}$ to $T(j)$; delete dominated labels from $T(j)$;

Labeling Algorithm

This routine computes a fastest path from node 1 to node n such that $\ell($ path $) \leq L$:
$S(1):=\{(0,0)\} ;$
update $(1,(0,0))$;
while $S(n)$ is empty do
// find minimum temporary labeled node
$d:=\operatorname{argmin}\left\{d_{t}: d \in T\right\} ;$
$i:=$ corresponding node;
move the label d from $T(i)$ to $S(i)$; update (i, d);

This can degenerate into a huge enumeration

Alternative Algorithm for CMCFP

Idea: Forget about Capacity Constraints

1. Frank-Wolfe algorithm: linearize using current gradient
2. Simplex algorithm to solve resulting LP
3. Column generation to handle exponentially many paths
4. Constrained Shortest Path Problem (CSPP) algorithm for pricing
5. Dijkstra's algorithm as a routine for CSPP

Constrained Shortest Path Example

Relaxing Capacity Constraints

$\mathrm{CSO}_{\varepsilon}=\mathrm{min}$ total travel time

$$
\begin{array}{rc}
\text { s.t. } \sum_{P \in \mathcal{P}_{i}: P \text { valid }} f_{P}=r_{i} & \text { for all } i \\
\sum_{P \ni a} f_{P} \leq c_{a} & \text { for } a \in A \\
f_{P} \geq 0 &
\end{array}
$$

- Capacity constraint violated $\Rightarrow C(f)=\infty$ because latency is infinity
- Minimization takes care of making the solution feasible
- No capacity constraints \rightarrow the problem is separable!

CSO can be found with a sequence of CSPP

Computational Experience

Part of an Instance

Computational Experiments

We used real-world instances obtained from DaimlerChrysler (Berlin) and from the Transportation Network Test Problems website:
http://www.bgu.ac.il/~bargera/tntp/

Instance Name	$\|V\|$	$\|A\|$	$\|K\|$	$\|A\| \cdot\|K\|$
Sioux Falls	24	76	528	40 K
Friedrichshain	224	523	506	265 K
Winnipeg	1,067	2,975	4,344	13 M
Neukölln	1,890	4,040	3,166	13 M
Mitte, Prenzlauerberg \& Friedrichshain	975	2,184	9,801	21 M
Chicago Sketch	933	2,950	83,113	245 M
Berlin	12,100	19,570	49,689	972 M

© 2004 Massachusetts Institute of Technology
Computational Experience

- Normal unfairness of path P for OD-pair $i=\frac{\ell_{P}}{\min \mathcal{P}_{i} \ell_{Q}}$
$\rightarrow 1 \leq$ normal unfairness $\leq 1+\varepsilon$
- Loaded unfairness of path P for OD-pair $i=\frac{t_{P}(f)}{\min \mathcal{P}_{i} t_{Q}(f)}$
$\rightarrow 1 \leq$ loaded unfairness
- UE unfairness of path P for OD-pair $i=\frac{t_{P}(f)}{\min } Q \in \mathcal{P}_{i} t_{Q}($ BUE $)$
$\rightarrow 0 \leq$ UE unfairness

Unfairness Percentiles

normal unfairness: controlled directly

© 2004 Massachusetts Institute of Technology

Computational Experience
loaded unfairness: influenced

Free-flow Normal Lengths: High Cost

©2004 Massachusetts Institute of Technology
Computational Experience

Unfairness Distributions: High Travel Times

$\frac{t_{P}(f)}{\min _{Q \in \mathcal{P}_{i}} t_{Q}(f)}$

$\frac{t_{P}(f)}{\min _{Q \in \mathcal{P}_{i}} t_{Q}(\text { BUE })}$

Unfairness Distributions: Fair Enough

$$
\frac{t_{P}(f)}{\min Q \in \mathcal{P}_{i} t_{Q}(f)}
$$

$$
\frac{t_{P}(f)}{\min _{Q \in \mathcal{P}_{i}} t_{Q}(\mathrm{BUE})}
$$

Convergence

© 2004 Massachusetts Institute of Technology

CSO allows us to control the tradeoff between efficiency and unfairness

Solutions
marked with ' \circ '
denote $\mathbf{C S O}_{1.02}$

Review

- Results:

Free-flow normal length
UE normal length

Conclusion

- Optimization Approach to Route Guidance
- Conventional route guidance methods focus on the individual
- SO not implementable
- UE not efficient
- CSO is a better alternative: efficient and fair
- Demand-dependent normal lengths are a better choice
- Considered Networks with Capacities
- Multiple equilibria
- Worst UE is unbounded
- Guarantee for best UE is as good as without capacities

THE END

Summary

- In principle, the system performance can be optimized while obeying individual needs and systems response.
- In fact, many different tools, from non-linear optimization, from linear programming, and from discrete optimization, nicely complement each other to lead to a fairly efficient algorithm for huge (static) instances.
- Yet, more (dynamic) ideas needed before technology ready for field test.

2002 Urban Mobility Study shows we could be better

(http://mobility.tamu.edu/ums)

1982

time penalty for peak period travelers	16 hours	62 hours
period of time with congestion	4.5 hours	7 hours
volume of roadways with congestion	34%	58%

UE Travel Times: Good Normal Lengths

tolerance	cost	99th percentile loaded unfairness
UE	2915	1.056
1.01	2800	1.348
1.02	2738	1.375
1.03	2726	1.424
1.05	2694	1.456
1.10	2676	1.517
1.20	2657	1.545
1.30	2657	1.538
SO	2657	1.546

