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UE unique UE 

UE/SO ≥ α(L) UE/SO 
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Lecture 1 

Equilibrium; System 

User Equilibria in Networks with 

Lecture 2 

System Optimum; Dantzig-Wolfe 

Decomposition; Constrained Shortest Paths; 

Computational Results. 
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Review of Traffic Model 

Directed graph V,A with capacities, 
with rate 

Flows on paths Can be non-integral. 

Traversal times: latency functions 
continuous nondecreasing 
belong to a given set (e.g. linear) 

The total travel time of a flow is: 

1 = 10  
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Review of First Lecture 

No capacities With capacities 

Set of 

may be non-convex 

unbounded 
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SO 

C(f ) = 104 but fair! 
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selfish users central planner the goal 
own travel time welfare 

fair, not efficient efficient, not fair fair, efficient 
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Long Detours in 

Instance with constant latencies: 
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Long Detours in 

routes 1 unit along each path: 100 + 3
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Long Detours in 

Compare to routing 1 unit along the other paths: 
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Constrained 
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• SO cannot due to 
unfairness 

• UE 

Use instead! 

• CSO = min total 
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• 

• 

• UE 

Notation: 

• �a 

• �P = 
� 

a∈P 

�a 
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System Optimum 

2004 Massachusetts Institute of Technology System Optimum 

Route Guidance 

be implemented in practice 

does not take into account the global welfare 

constrained SO 

travel time 
s.t. demand satisfied 

users are assigned to “fair” routes 
capacity constraints 
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Technological Requirements 

exact knowledge of the current position 

2-way communication to a main server 
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Constrained SO: Normal Lengths 

Normal lengths:  a-priori belief of network  

Geographic distances 

Free-flow travel times (times in empty network) 

Travel times under 

normal length of arc: 

normal length of path: 
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Constrained SO: Definition

• Fix a tolerance ε ≥ 0

• A path P ∈ Pi is valid if �P ≤ (1 + ε) × min Q∈Pi
�Q

• Definition:

CSOε = min total travel time

s.t.
�

P∈Pi:P valid

fP =ri for all i

�

P�a

fP ≤ca for a ∈ A

fP ≥0
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CSO Example

SO CSO
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Remarks about CSO

• It is a non-linear, convex, minimization problem over a polytope

(constrained min-cost multi-commodity flow problem)

• We solve it using the Frank-Wolfe algorithm:

we solve a sequence of linear programs

• No need to consider all path variables simultaneously:

we use column generation
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Computing CSO

• Each algorithm uses the next as a subroutine:

1. Frank-Wolfe algorithm: linearize using current gradient

2. Simplex algorithm to solve resulting LP

3. Column generation to handle exponentially many paths

4. Constrained Shortest Path Problem (CSPP) algorithm for pricing

5. Dijkstra’s algorithm as a routine for CSPP

c©2004 Massachusetts Institute of Technology Constrained System Optimum 15



0. x0 k = 0 and LB = −∞. 

1. UB  = C(xk) and x̄ = xk . 

2. 
z ∗ = min{C(x̄) + ∇C(x̄)T (x − x̄) : x feasible }. 
Let x ∗ 

3. xk+1 = x̄+ᾱ(x ∗ −x̄). 

4. LB { ∗}. 

5. |UB  −LB| ≤ tolerance, STOP! 
k = k + 1
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• Let ta = ∂C(f i) 
∂fa 

fa 

• 
subset P ′⊆ P  of : 

min
� 

a∈A 

ta fa 

s.t.
� 

P �a 

fP = fa a ∈ A 

� 

valid P ∈P ′ 
i 

fP = ri i = 1, . . . , k  (1) 

fa ≤ ca a ∈ A (2) 

fP ≥ 0 P ∈ P ′ 
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• i σi 

• a πa ≥ 0

• ⇔ 
� 

a∈P 

(ta + πa) ≥ σi ∀ valid P ∈ Pi 

• : 

i Pi 

σi 

” !  
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σi and πa the optimal 
solution 

i: Pi in Pi ta + πa 
�

a∈Pi
(ta + πa) ≥ σi i 

5. 

7. P ′ 

8. Pi with 
�

a∈Pi
(ta + πa) < σi to P ′ 

9. 
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Frank-Wolfe Algorithm 

Initialization: start with flow . Set  

Update upper bound: set 

Compute next iterate: 

be the optimal flow. 

Solve the line-search problem and set 

Update lower bound: set = max LB, z 

Check stopping criteria: if 
Otherwise, set and go to step 1.  
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Linear Problem and Column Generation 

be the objective coefficient of in the LP 

As there are exponentially many paths in the LP, 
we form LP’ with a valid paths

for all 

for all 

for all 

for all 
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Linear Problem and Column Generation II 

For each demand , let  be the dual variable corresponding to (1) 

For each arc , let  be the dual variable corresponding to (2) 

Solution optimal in LP 

The Pricing Problem

For every commodity , either find a valid path in with modified 
cost less than or assert that no such path exists. 

Can be solved as a “Constrained Shortest Path Problem
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Algorithm for Solving the LP 

1. Solve the linear program LP’ 

2. Let be simplex multipliers of the current 

3. for all find shortest valid path w.r.t. arc costs 

4. if for all 

Solution is optimal for LP. STOP 

6. else 

Remove one or more non-basic variables from 

Add at least one path 

goto 1 
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• as many new to 

⇒ Add all 

⇒ 

• 

one 
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4. 

5. Dijkstra
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• : 
let d(j) j ∈ A 

• For j ∈ A d∗(j) from 1 to j 

• 

– 
– Let T = { } ⇒ d(j) ≥ d∗(j) ∀j ∈ T 

– is 
– Let S = { } ⇒ d(j) = d∗(j) ∀j ∈ S 
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Observations for Solving the LP 

Empirically, very advantageous to add columns 
restricted master problem as possible 

paths that price favorably until we run out of space 

Non-basic variables removed when their slots are needed for new 
candidate paths 

We observed a reduction in computation time by factors of about 50, 
compared to always adding a single column and removing another 
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The Pricing Problem 

1. Frank-Wolfe algorithm: linearize using current gradient 

2. Simplex algorithm to solve resulting LP 

3. Column generation to handle exponentially many paths 

Constrained Shortest Path Problem (CSPP) algorithm for pricing 

’s algorithm as a routine for CSPP 
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Shortest Path Problem 
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Distance Labels 

We want the shortest paths from node 1 to all other nodes 

Throughout the run, nodes will have distance labels

denote the label of 

, let  denote the shortest distance 

Labels can be : 

Temporary: shortest distance found so far 
temporarily labeled nodes

Permanent: when the label the shortest distance 
permanently labeled nodes 
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d 

d(j) ≤ d(i) + tij ∀ ( ) ∈ A 
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d(i) i, (i) 
i

(i) 

( ) ∈ A do 
if d(j) > d(i) + tij then 

d(j) :=  d(i) + tij ; 
(j) :=  i; 

10 
i 

j 

2 

4 

j 

15 
12 

13 
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1

S := {1}; T := V \ {1}; 
d ; d(j) :=  ∞ j = 2, 3, . . . , n; 

1); 
while S �= V do 

i := { d(j) :  j ∈ T }; 
S := S ∪ {i}; T := T \ {i}; 

i); 
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Optimality Conditions 

The distance labels are shortest path distances iff 

i, j
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Dijkstra’s Algorithm: Update 

Given a label for node Update

improves the labels of ’s neighbors: 

Procedure Update

for each i, j

pred
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Dijkstra’s Algorithm: Main 

This routine computes shortest paths from node to all 
other nodes: 

(1) := 0 for 
update(

// find minimum temporary labeled node and update it 
argmin

update(
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Shortest Path Example 
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Constrained 
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1 to 
6 (tij, �ij) 

(1,10) 

(1,1) 

(1,7)(2,3) 

(10,3) 

(12,3) 

(2,2) 

(1,2) (10,1) 
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• d(j) d(j) = (dt(j), d�(j)) 

– dt(j)
– d�(j) 1 to j 

• 

• d(j) dominates d′(j) iff dt(j) ≤ d′ 
t(j) and d�(j) ≤ d′ 

�(j). 

• j T (j) of 
S(j) of 

• Let T and S and 
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Given a d(i) i, the i’s 

i d(i)) 

if dt(i) ≥ 1 to n 
return; 

( ) ∈ A do 
dnew(j) :=  d(i) + (tij , �ij ); j 
if dnew 

� (j) ≤ L and dnew j 
add dnew to T (j); 

T (j); 

c© 31 

Shortest Path 
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Constrained Shortest Path Example 

Find the fastest path from node 
node with a length of at most 10 
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Labels 

A label  is now a tuple 

is the travel time 
the length of a path from node 

A node may have several labels at the same time 

A label  

In the algorithm, every node has a set temporary labels 
and a set permanent labels 

be the sets of all temporary permanent labels, resp. 
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Update 

label for node Update improves labels of 
neighbors: 

Procedure Update(node , label  

min. time of a feasible path from node so far 

for each i, j

// new label for 
is not dominated by other labels in 

delete dominated labels from 
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1 n 
�(path) ≤ L: 

S {(0, 0)}; 
1, (0, 0)); 

while S(n) 
l l

d := { dt : d ∈ T }; 
i := 

d from T (i) to S(i); 
i, d); 

enumeration 
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Constrained 
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Idea: 
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CSOε = min total 

s.t. 
� 

P ∈Pi:P valid 

fP =ri i 

� 

P �a 

fP ≤ca a ∈ A 

fP ≥0 

• ⇒ C(f ) =  ∞ 

• 

• → ! 

CSO 
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Labeling Algorithm 

This routine computes a fastest path from node to node 
such that 

(1) := 
update(

is empty do 
// find minimum temporary abe ed node 

argmin 
corresponding node; 

move the label 
update(

This can degenerate into a huge 
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Shortest Path Example 
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Alternative Algorithm for CMCFP 

Forget about Capacity Constraints 

1. Frank-Wolfe algorithm: linearize using current gradient 

2. Simplex algorithm to solve resulting LP 

3. Column generation to handle exponentially many paths 

4. Constrained Shortest Path Problem (CSPP) algorithm for pricing 

5. Dijkstra’s algorithm as a routine for CSPP 
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Relaxing Capacity Constraints 

travel time 

for all 

for 

Capacity constraint violated because latency is infinity 

Minimization takes care of making the solution feasible 

No capacity constraints the problem is separable

can be found with a sequence of CSPP 
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Computational Experience
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Computational Experiments

We used real-world instances obtained from DaimlerChrysler (Berlin)

and from the Transportation Network Test Problems website:
http://www.bgu.ac.il/~bargera/tntp/

Instance Name |V | |A| |K| |A| · |K|
Sioux Falls 24 76 528 40K

Friedrichshain 224 523 506 265K

Winnipeg 1,067 2,975 4,344 13M

Neukölln 1,890 4,040 3,166 13M

Mitte, Prenzlauerberg

& Friedrichshain 975 2,184 9,801 21M

Chicago Sketch 933 2,950 83,113 245M

Berlin 12,100 19,570 49,689 972M
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Part of an Instance

Demand Solution
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Unfairness

• Normal unfairness of path P for OD-pair i = �P
min Q∈Pi

�Q

→ 1 ≤ normal unfairness ≤ 1 + ε

• Loaded unfairness of path P for OD-pair i = tP (f)
min Q∈Pi

tQ(f)

→ 1 ≤ loaded unfairness

• UE unfairness of path P for OD-pair i = tP (f)
min Q∈Pi

tQ(BUE)

→ 0 ≤ UE unfairness

c©2004 Massachusetts Institute of Technology Computational Experience 39
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C(CSOε) 
tP (f ) 

min Q∈Pi 
tQ(f ) 
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C(CSOε) 
tP (f ) 

min Q∈Pi 
tQ(f ) 
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Unfairness Percentiles 

normal unfairness: 
controlled directly 

loaded unfairness: 

tolerance ( tolerance (
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Free-flow Normal Lengths: High Cost 

tolerance (
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Unfairness Distributions: High Travel Times 
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UE Travel Times: Good Normal Lengths 

tolerance (
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Convergence 
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CSO 
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Review 

• Results: 
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Unfairness Distributions: Fair Enough 

2004 Massachusetts Institute of Technology Experience 

More difficult with 
bigger tolerance 

Runtime grows 
exponentially 

tolerance (
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allows us to control the tradeoff between 
efficiency and unfairness 
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Free-flow normal length UE normal length 
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Conclusion 

• 

– 

– SO 

– UE 

– CSO 

• 

• 

– 

– UE 

– UE 
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• can optimized 

• 

• 
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1982 2000 

34% 58% 
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Optimization Approach to Route Guidance 

Conventional route guidance methods focus on the individual 

not implementable 

not efficient 

is a better alternative: efficient and fair 

Demand-dependent normal lengths are a better choice 

Considered Networks with Capacities 

Multiple equilibria 

Worst is unbounded 

Guarantee for best is as good as without capacities 
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Summary 

In principle, the system performance be 
while obeying individual needs and systems response. 

In fact, many different tools, from non-linear optimization, 
from linear programming, and from discrete optimization, 
nicely complement each other to lead to a fairly efficient 
algorithm for huge (static) instances. 

Yet, more (dynamic) ideas needed before technology ready 
for field test. 
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THE END 
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2002 Urban Mobility Study shows we could be better 
(http://mobility.tamu.edu/ums) 

time penalty for peak period travelers 16 hours 62 hours 

period of time with congestion 4.5 hours 7 hours 

volume of roadways with congestion 
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tolerance cost 

UE 2915 1.056 
1.01 2800 1.348 
1.02 2738 1.375 
1.03 2726 1.424 
1.05 2694 1.456 
1.10 2676 1.517 
1.20 2657 1.545 
1.30 2657 1.538 
SO 2657 1.546 
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UE Travel Times: Good Normal Lengths 

99th percentile 
loaded unfairness 
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Solution Quality: UE normal lengths are good 
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