Effective Route Guidance in Traffic Networks

Lectures developed by Andreas S. Schulz and Nicolás Stier

May 13, 2004

©2004 Massachusetts Institute of Technology

\bullet Lecture 1

Route Guidance; User Equilibrium; System Optimum; User Equilibria in Networks with Capacities.

• Lecture 2

Constrained System Optimum; Dantzig-Wolfe Decomposition; Constrained Shortest Paths; Computational Results.

©2004 Massachusetts Institute of Technology

Review of Traffic Model

- Directed graph G=(V,A) with capacities, k demands (o_i,d_i) with rate r_i
- Flows on paths f_P . Can be non-integral.
- Traversal times: *latency functions* $t_a(\cdot)$
 - \rightarrow continuous and nondecreasing
 - \rightarrow belong to a given set \mathcal{L} (e.g. linear)
- The total travel time of a flow is:

$$C(f) := \sum_{a \in A} t_a(f_a) f_a$$

2

Review of First Lecture

No capacities	With capacities
UE unique	Set of UE may be non-convex
$\mathbf{UE}/\mathbf{SO} \geq \alpha(\mathcal{L})$	UE / SO unbounded
$UE/SO \le lpha(\mathcal{L})$	$BUE/SO \le \alpha(\mathcal{L})$

• SO cannot be implemented in practice of unfairness	due to
• UE does not take into account the global welfa	are
Use constrained SO instead!	
• CSO = min total travel time s.t. demand satisfied users are assigned to "fair" routes capacity constraints	
©2004 Massachusetts Institute of Technology Constrained System Optimum 8 ©2004 Massachusetts Institute of Technology Constrained System Optimum	9
Technological Requirements Constrained SO: Normal Lengths	
Normal lengths: a-priori belief of network	
Geographic distances	
• Free-flow travel times (times in empty network)
• Travel times under UE	
exact knowledge of the current position • normal length of arc: ℓ_a • normal length of path: $\ell_B = \sum \ell_a$	
2-way communication to a main server $a \in P$	

- Fix a tolerance $\varepsilon \ge 0$
- A path $P \in \mathcal{P}_i$ is valid if $\ell_P \leq (1 + \varepsilon) \times \min_{Q \in \mathcal{P}_i} \ell_Q$
- Definition:
 - $CSO_{\varepsilon} = min \text{ total travel time}$

Remarks about CSO

- It is a non-linear, convex, minimization problem over a polytope (constrained min-cost multi-commodity flow problem)
- We solve it using the Frank-Wolfe algorithm: we solve a sequence of linear programs
- No need to consider all path variables simultaneously: we use column generation

Computing CSO

- Each algorithm uses the next as a subroutine:
- 1. Frank-Wolfe algorithm: linearize using current gradient
- 2. Simplex algorithm to solve resulting LP
- 3. Column generation to handle exponentially many paths
- 4. Constrained Shortest Path Problem (CSPP) algorithm for pricing
- 5. Dijkstra's algorithm as a routine for CSPP

Frank-Wolfe Algorithm

- 0. Initialization: start with flow x^0 . Set k = 0 and $LB = -\infty$.
- 1. Update upper bound: set $UB = C(x^k)$ and $\bar{x} = x^k$.
- 2. Compute next iterate: $z^* = \min\{C(\bar{x}) + \nabla C(\bar{x})^T(x - \bar{x}) : x \text{ feasible }\}.$ Let x^* be the optimal flow.
- 3. Solve the line-search problem and set $x^{k+1} = \bar{x} + \bar{\alpha}(x^* \bar{x})$.
- 4. Update lower bound: set $LB = \max\{LB, z^*\}$.
- 5. Check stopping criteria: if $|UB LB| \le \text{tolerance}, \text{STOP}!$ Otherwise, set k = k + 1 and go to step 1.

Constrained System Optimum

Linear Problem and Column Generation

• Let
$$t_a = \frac{\partial C(f^i)}{\partial f_a}$$
 be the objective coefficient of f_a in the LP

 As there are exponentially many paths in the LP, we form LP' with a subset *P*'⊆ *P* of valid paths:

$$\begin{array}{l} \min & \sum_{a \in A} t_a f_a \\ \text{s.t.} & \sum_{P \ni a} f_P = f_a \quad \text{ for all } a \in A \\ & \sum_{\text{valid } P \in \mathcal{P}'_i} f_P = r_i \quad \text{ for all } i = 1, \dots, k \end{array}$$
(1)

$$f_a \le c_a \qquad \text{for all } a \in A \tag{2}$$
$$f_P \ge 0 \qquad \text{for all } P \in \mathcal{P}'$$

©2004 Massachusetts Institute of Technology

Constrained System Optimum

17

Linear Problem and Column Generation II

- For each demand i, let σ_i be the dual variable corresponding to (1)
- For each arc a, let $\pi_a \ge 0$ be the dual variable corresponding to (2)
- Solution optimal in LP $\Leftrightarrow \sum_{a \in P} (t_a + \pi_a) \ge \sigma_i \quad \forall \text{ valid } P \in \mathcal{P}_i$
- The Pricing Problem:

©2004 Massachusetts Institute of Technology

For every commodity i, either find a valid path in \mathcal{P}_i with modified cost less than σ_i or assert that no such path exists.

Can be solved as a "Constrained Shortest Path Problem" !

Algorithm for Solving the LP

- 1. Solve the linear program LP'
- 2. Let σ_i and π_a be the simplex multipliers of the current optimal solution
- 3. for all *i*: find shortest valid path P_i in \mathcal{P}_i w.r.t. arc costs $t_a + \pi_a$

4. if
$$\sum_{a \in P_i} (t_a + \pi_a) \ge \sigma_i$$
 for all i

- 5. Solution is optimal for LP. STOP
- 6. else
- 7. Remove one or more non-basic variables from \mathcal{P}'
- 8. Add at least one path P_i with $\sum_{a \in P_i} (t_a + \pi_a) < \sigma_i$ to \mathcal{P}'
- 9. goto 1

1. Frank-Wolfe algorithm: linearize using current gradient • Empirically, very advantageous to add as many new columns to restricted master problem as possible 2. Simplex algorithm to solve resulting LP \Rightarrow Add all paths that price favorably until we run out of space 3. Column generation to handle exponentially many paths \Rightarrow Non-basic variables removed when their slots are needed for new candidate paths 4. Constrained Shortest Path Problem (CSPP) algorithm for pricing • We observed a reduction in computation time by factors of about 50, compared to always adding a single column and removing another one 5. Dijkstra's algorithm as a routine for CSPP ©2004 Massachusetts Institute of Technology **Constrained System Optimum** 20 ©2004 Massachusetts Institute of Technology **Constrained System Optimum** 21 **Distance Labels** We want the shortest paths from node 1 to all other nodes • Throughout the run, nodes will have *distance labels*: let d(j) denote the label of $j \in A$ **Shortest Path Problem** • For $j \in A$, let $d^*(j)$ denote the *shortest distance* from 1 to j• Labels can be : - Temporary: shortest distance found so far - Let $T = \{ \text{ temporarily labeled nodes} \} \Rightarrow d(j) \ge d^*(j) \quad \forall j \in T$ - Permanent: when the label is the shortest distance - Let $S = \{ \text{ permanently labeled nodes } \} \Rightarrow d(j) = d^*(j) \quad \forall j \in S$ 22

Observations for Solving the LP

The Pricing Problem

		We used real-world instances obtained from <i>DaimlerChrysler</i> (Ber and from the <i>Transportation Network Test Problems</i> website: http://www.bgu.ac.il/~bargera/				
Computatio	nal Experience	Instance Name $ V $ $ A $ $ K $ $ A \cdot K $				
•	•	<i>Sioux Falls</i> 24 76 528 40K				
		Friedrichshain 224 523 506 265K				
		Winnipeg 1,067 2,975 4,344 13M				
		Neukölln 1,890 4,040 3,166 13M				
		Mitte, Prenzlauerberg				
		& Friedrichshain 975 2,184 9,801 21M				
		Chicago Sketch 933 2,950 83,113 245M				
		Berlin 12,100 19,570 49,689 972M				
©2004 Massachusetts Institute of Technology	Computational Experience	36 ©2004 Massachusetts Institute of Technology Computational Experience				
Part of	an Instance	Unfairness				
Demand	Solution	• Normal unfairness of path P for OD-pair $i = \frac{\ell_P}{\min \rho \in \mathcal{P}, \ell_Q}$				
		$\rightarrow 1 \leq \text{normal unfairness} \leq 1 + \varepsilon$				
		• Loaded unfairness of path P for OD-pair $i = \frac{t_P(f)}{\min Q \in \mathcal{P}_i t_Q(f)}$				
		$ ightarrow \ 1 \leq$ loaded unfairness				
		• UE unfairness of path P for OD-pair $i = \frac{t_P(f)}{\min Q \in \mathcal{P}_i t_Q(BUE)}$				
		$\rightarrow 0 \leq UE \text{ unfairness}$				

Computational Experiments

Unfairness Percentiles

Free-flow Normal Lengths: High Cost

Unfairness Distributions: High Travel Times

UE Travel Times: Good Normal Lengths

Convergence

Conclusion

- Optimization Approach to Route Guidance
 - Conventional route guidance methods focus on the individual
 - SO not implementable
 - $\ensuremath{\mathsf{UE}}$ not efficient
 - $\ensuremath{\text{CSO}}$ is a better alternative: efficient and fair
- Demand-dependent normal lengths are a better choice
- Considered Networks with Capacities
 - Multiple equilibria

©2004 Massachusetts Institute of Technology

- Worst \mathbf{UE} is unbounded
- Guarantee for best $\ensuremath{\text{UE}}$ is as good as without capacities

THE END

•	In	principle,	the	system	performa	nce	can	be	optimize	ed
	wh	ile obeying	g ind	ividual	needs and	syst	ems	resp	oonse.	

Summary

- In fact, many different tools, from non-linear optimization, from linear programming, and from discrete optimization, nicely complement each other to lead to a fairly efficient algorithm for huge (static) instances.
- Yet, more (dynamic) ideas needed before technology ready for field test.

©2004 Massachusetts Institute of Technology

2002 Urban Mobility Study shows we could be better

(http://mobility.tamu.edu/ums)

	1982	2000
time penalty for peak period travelers	16 hours	62 hours
period of time with congestion	4.5 hours	7 hours
volume of roadways with congestion	34%	58%

48

UE Travel Times: Good Normal Lengths

tolerance	cost	99th percentile
		loaded unfairness
UE	2915	1.056
1.01	2800	1.348
1.02	2738	1.375
1.03	2726	1.424
1.05	2694	1.456
1.10	2676	1.517
1.20	2657	1.545
1.30	2657	1.538
SO	2657	1.546

Solution Quality: UE normal lengths are good

©2004 Massachusetts Institute of Technology

52

©2004 Massachusetts Institute of Technology