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2 The Practical Importance of Duality 

Duality arises in nonlinear (and linear) optimization models in a wide variety 
of settings. Some immediate examples of duality are in: 

•	 Models of electrical networks. The current flows are “primal vari-
ables” and the voltage differences are the “dual variables” that arise in 
consideration of optimization (and equilibrium) in electrical networks. 

•	 Models of economic markets. In these models, the “primal” vari-
ables are production levels and consumption levels, and the “dual” 
variables are prices of goods and services. 

•	 Structural design. In these models, the tensions on the beams are 
“primal” variables, and the nodal displacements are the “dual” vari-
ables. 
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Nonlinear (and linear) duality is very useful. For example, dual problems 
and their solutions are used in connection with: 

•	 Identifying near-optimal solutions. A good dual solution can be 
used to bound the values of primal solutions, and so can be used to 
actually identify when a primal solution is near-optimal. 

•	 Proving optimality. Using a strong duality theorem, one can prove 
optimality of a primal solution by constructing a dual solution with 
the same objective function value. 

•	 Sensitivity analysis of the primal problem. The dual variable on 
a constraint represents the incremental change in the optimal solution 
value per unit increase in the RHS of the constraint. 

•	 Karush-Kuhn-Tucker (KKT) conditions. The optimal solution 
to the dual problem is a vector of KKT multipliers. 

•	 Convergence of improvement algorithms. The dual problem is 
often used in the convergence analysis of algorithms. 

•	 Good Structure. Quite often, the dual problem has some good 
mathematical, geometric, or computational structure that can ex-
ploited in computing solutions to both the primal and the dual prob-
lem. 

•	 Other uses, too . . . . 

3 Review of Convexity 

3.1 Local and Global Optima of a Function 

The ball centered at x̄ with radius ε is the set: 

x, ε) :=  {x|‖x − ¯B(¯ x‖ ≤ ε}. 
Consider the following optimization problem over the set F : 

P	 : minx or maxx f (x) 

s.t. x ∈ F  
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We have the following definitions of local/global, strict/non-strict min-
ima/maxima. 

Definition 3.1 x ∈ F  is a local minimum of P if there exists ε >  0 such 
that f(x) ≤ f(y) for all y ∈ B(x, ε) ∩ F . 

Definition 3.2 x ∈ F  is a global minimum of P if f(x) ≤ f(y) for all 
y ∈ F . 

Definition 3.3 x ∈ F  is a strict local minimum of P if there exists ε >  0 
such that f(x) < f(y) for all y ∈ B(x, ε) ∩ F , y �= x. 

Definition 3.4 x ∈ F  is a strict global minimum of P if f(x) < f(y) for 
all y ∈ F , y �= x. 

Definition 3.5 x ∈ F  is a local maximum of P if there exists ε >  0 such 
that f(x) ≥ f(y) for all y ∈ B(x, ε) ∩ F . 

Definition 3.6 x ∈ F  is a global maximum of P if f(x) ≥ f(y) for all 
y ∈ F . 

Definition 3.7 x ∈ F  is a strict local maximum of P if there exists ε >  0 
such that f(x) > f(y) for all y ∈ B(x, ε) ∩ F , y �= x. 

Definition 3.8 x ∈ F  is a strict global maximum of P if f(x) > f(y) for 
all y ∈ F , y �= x. 

The phenomenon of local versus global optima is illustrated in Figure 1. 

3.2 Convex Sets and Functions 

Convex sets and convex functions play an extremely important role in the 
study of optimization models. We start with the definition of a convex set: 

Definition 3.9 A subset S ⊂ 	n is a convex set if 

x, y ∈ S ⇒ λx + (1  − λ)y ∈ S 

for any λ ∈ [0, 1]. 
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Figure 1: Illustration of local versus global optima.


Figure 2: Illustration of convex and non-convex sets.


Figure 3: Illustration of the intersection of convex sets. 
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Figure 4: Illustration of convex and strictly convex functions. 

Figure 2 shows a convex set and a non-convex set. 

Proposition 3.1 If S, T are convex sets, then S ∩ T is a convex set. 

This proposition is illustrated in Figure 3. 

Proposition 3.2 The intersection of any collection of convex sets is a con
vex set. 

We now turn our attention to convex functions, defined below. 

Definition 3.10 A function f (x) is a convex function if 

f (λx + (1  − λ)y) ≤ λf (x) + (1  − λ)f (y) 

for all x and y and for all λ ∈ [0, 1]. 

Definition 3.11 A function f (x) is a strictly convex function if 

f (λx + (1  − λ)y) < λf  (x) + (1  − λ)f (y) 

for all x and y, x �= y, and for all  λ ∈ (0, 1). 

Figure 4 illustrates convex and strictly convex functions. 

Now consider the following optimization problem, where the feasible re-
gion is simply described as the set F : 
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P : minimizex f(x) 

s.t. 
x ∈ F  

Theorem 3.1 Suppose that F is a convex set, f : F → 	 is a convex 
function, and x is a local minimum of P . Then ¯¯ x is a global minimum of f 
over F . 

Proof: Suppose x̄ is not a global minimum, i.e., there exists y ∈ F for 
x). Let y(λ) =  λx+(1−λ)y, which is a convex combination which f(y) < f(¯ ¯

of x̄ and y for λ ∈ [0, 1] (and therefore, y(λ) ∈ F for λ ∈ [0, 1]). Note that 
y(λ) → x̄ as λ → 1.


From the convexity of f(·),


¯ x)+(1−λ)f(y) < λf(¯ x) =  f(¯f(y(λ)) = f(λx+(1−λ)y) ≤ λf(¯ x)+(1−λ)f(¯ x) 

x) for all λ ∈ (0, 1), and so ¯for all λ ∈ (0, 1). Therefore, f(y(λ)) < f(¯ x is 
not a local minimum, resulting in a contradiction. 
q.e.d. 

Some examples of convex functions of one variable are: 

• f(x) =  ax + b 

• f(x) =  x2 + bx + c 

• f(x) =  |x| 
• f(x) =  − ln(x) for  x > 0 

• f(x) =  1 for x > 0 x 

x• f(x) =  e
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Figure 5: Illustration of concave and strictly concave functions. 

3.3 Concave Functions and Maximization 

The “opposite” of a convex function is a concave function, defined below: 

Definition 3.12 A function f (x) is a concave function if 

f (λx + (1  − λ)y) ≥ λf (x) + (1  − λ)f (y) 

for all x and y and for all λ ∈ [0, 1]. 

Definition 3.13 A function f (x) is a strictly concave function if 

f (λx + (1  − λ)y) > λf  (x) + (1  − λ)f (y) 

for all x and y, x �= y, and for all  λ ∈ (0, 1).


Figure 5 illustrates concave and strictly concave functions.


Now consider the maximization problem P :


P : maximizex f (x) 

s.t. 
x ∈ F  

Theorem 3.2 Suppose that F is a convex set, f : F → 	 is a concave 
¯ ¯function, and x is a local maximum of P . Then x is a global maximum of 

f over F . 
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3.4 Convex Programs 

Now consider the optimization problem P which might be either a mini-
mization problem or a maximization problem: 

P	 : minx or maxx f (x) 

s.t. 
x ∈ F  

Definition 3.14 We call P a convex program if 

• F is a convex set, and 

•	 we are minimizing and f (x) is a convex function, or we are maximizing 
and f (x)is a concave function. 

Then from the above theorems, every local optima of the objective func-
tion of a convex program is a global optima of the objective function. 

The class of convex programs is the class of “well-behaved” optimization 
problems. 

3.5 Linear Functions, Convexity, and Concavity 

Proposition 3.3 A linear function f (x) =  aT x + b is both convex and 
concave. 

Proposition 3.4 If f (x) is both convex and concave, then f (x) is a linear 
function. 

These properties are illustrated in Figure 6. 
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Figure 6: A linear function is convex and concave. 

4 A Separating Hyperplane Theorem 

The main tool that is used in developing duality, analyzing dual problems, 
etc., is the “separating hyperplane” theorem for convex sets. This theorem 
states that a point outside of a convex set can be separated from the set by 
hyperplane. The theorem is intuitively obvious, and is very easy to prove. 

Theorem 4.1 Strong Separating Hyperplane Theorem: Suppose that 
x /S is a convex set in 	n, and that we are given a point ¯ ∈ S. Then there 

exists a vector u �= 0  and a scalar α for which the following hold: 

• uT x > α  for all x ∈ S 

T ¯• u x < α  

This is illustrated in Figure 7. 

A weaker version of this theorem is as follows: 

Theorem 4.2 Weak Separating Hyperplane Theorem: Suppose that 
x / ¯S is a convex set in 	n, and that we are given a point ¯ ∈ S or x ∈ ∂S. 

Then there exists a vector u �= 0  and a scalar α for which the following hold: 

• uT x ≥ α for all x ∈ S 

T ¯• u x ≤ α 
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x – 

S 

uTx = α 

Figure 7: Illustration of strong separation of a point from a convex set. 

x – 

S 

uTx = α 

Figure 8: Illustration of weak separation of a point from a convex set. 

This is illustrated in Figure 8. 

Now consider the following simple primal and dual problems, that will be 
prototypical of the geometry of duality that we will develop in this lecture. 

Primal : minimumx height of x 

s.t. 
x ∈ S, 
x ∈ L 
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Dual : maximumπ intercept of line π with L 

s.t. 
line π lies below S 

S
L 

z 

r 

π 

Figure 9: Illustration intersecting line dual. 

5 Definition of the Dual Problem 

Recall the basic constrained optimization model: 
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OP : minimumx f(x) 

s.t. 
g1(x) ≤ 0, 
· = 
· ≥ 
. . . 

gm(x) ≤ 0, 

x ∈ P, 

n �	 n �In this model, we have f(x) :  		 → 	 and gi(x) :  	 → 	, i  = 1, . . . , m. 

Of course, we can always convert the constraints to be “≤”, and so for 
now we will presume that our problem is of the form: 

∗OP : z = minimumx f(x) 

s.t. 
g1(x) ≤ 0, 

. . . 

gm(x) ≤ 0, 

x ∈ P, 

Here P could be any set, such as: 

n• P = 	
•	 P = {x | x ≥ 0}
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{ } 

∑ 

• P = {x | gi(x) ≤ 0, i  = m + 1, . . . , m + k} 

• P = x | x ∈ Zn 
+ 

• P = {x | Ax ≤ b} 

∗Let z denote the optimal objective value of OP.


For a nonnegative vector u, form the Lagrangian function:


m 
TL(x, u) :=  f(x) +  u g(x) =  f(x) +  uigi(x) 

i=1 

by taking the constraints out of the body of the model, and placing them in 
the objective function with costs/prices/multipliers ui for i = 1, . . . , m. 

We then solve the presumably easier problem: 

∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ P 

∗The function L (u) is called the dual function. 
∗We presume that computing L (u) is an easy task. 


The dual problem is then defined to be:


∗ ∗D :  v = maximumu L (u) 

s.t. u ≥ 0 
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6 Steps in the Construction of the Dual Problem 

We start with the primal problem: 

∗OP : z = minimumx f(x) 

s.t. 
gi(x) ≤ 0, i  = 1, . . . , m,  

x ∈ P, 

Constructing the dual involves a three-step process: 

• Step 1. Create the Lagrangian 

TL(x, u) :=  f(x) +  u g(x) . 

• Step 2. Create the dual function: 

∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ P 

• Step 3. Create the dual problem: 

∗ ∗D :  v = maximumu L (u) 

s.t. u ≥ 0 
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7	 Examples of Dual Constructions of Optimiza-
tion Problems 

7.1 The Dual of a Linear Problem 

Consider the linear optimization problem: 
TLP : minimumx c x 

s.t. Ax ≥ b 

What is the dual of this problem? 

7.2 The Dual of a Binary Integer Problem 

Consider the binary integer problem: 
TIP : minimumx c x 

s.t. Ax ≥ b 

xj ∈ {0, 1}, j  = 1, . . . , n  .  

What is the dual of this problem? 

7.3 The Dual of a Log-Barrier Problem 

Consider the following logarithmic barrier problem: 

3 
BP : minimumx1,x2,x3 5x1 + 7x2 − 4x3 − ln(xj ) 

j=1 

s.t.	 x1 + 3x2 + 12x3 = 37  

x1 > 0, x2 > 0, x3 > 0 . 

What is the dual of this problem?
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7.4 The Dual of a Quadratic Problem 

Consider the quadratic optimization problem: 

QP : minimumx 
1 
2x
 TT Qx + c x 

s.t. Ax ≥ b 

where Q is SPSD (symmetric and positive semi-definite). 

What is the dual of this problem? 

7.5	 Remarks on Problems with Different Formats of Con-
straints 

Suppose that our problem has some inequality and equality constraints. 
Then just as in the case of linear optimization, we assign nonnegative dual 
variables ui to constraints of the form gi(x) ≤ 0, unrestricted dual variables 
ui to equality constraints gi(x) = 0, and non-positive dual variables ui to 
constraints of the form gi(x) ≥ 0. For example, suppose our problem is: 

OP :	 minimumx f(x) 

s.t. 
gi(x) ≤ 0, i  ∈ L 

gi(x) ≥ 0, i  ∈ G 

gi(x) = 0, i  ∈ E 

x ∈ P, 

Then we form the Lagrangian: 
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∑ ∑ ∑ 
TL(x, u) :=  f(x) +  u g(x) =  f(x) +  uigi(x) +  uigi(x) +  uigi(x) 

i∈L i∈G i∈E 

∗and construct the dual function L (u): 

∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ P 

The dual problem is then defined to be: 

∗D :  maximumu L (u) 

s.t. 

ui ≥ 0, i  ∈ L 

ui ≤ 0, i  ∈ G 

> 
ui <, i ∈ E 

For simplicity, we presume that the constraints of OP are of the form 
gi(x) ≤ 0. This is only for ease of notation, as the results we develop pertain 
to the general case just described. 

8 The Dual is a Concave Maximization Problem 

We start with the primal problem: 
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OP : minimumx f(x) 

s.t. 
gi(x) ≤ 0, i  = 1, . . . , m  

x ∈ P, 

We create the Lagrangian: 

TL(x, u) :=  f(x) +  u g(x) 

and the dual function: 

∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ P 

The dual problem then is: 

∗D :  maximumu L (u) 

s.t. u ≥ 0 

∗Theorem 8.1 The dual function L (u) is a concave function.


Proof: Let u1 ≥ 0 and  u2 ≥ 0 be two values of the dual variables, and let
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u = λu1 + (1  − λ)u2, where λ ∈ [0, 1]. Then 

∗L (u) = minx∈P f(x) +  uT g(x) 

T	 T= minx∈P λ f(x) +  u1 g(x) + (1  − λ) f(x) +  u2 g(x) 

T	 T≥ λ minx∈P f(x) +  u1 g(x) + (1  − λ) minx∈P (f(x) +  u2 g(x) 

∗	 ∗= λL (u1) + (1  − λ)L (u2) . 

∗Therefore we see that L (u) is a concave function. 
q.e.d. 

9 Weak Duality 

∗Let z ∗ and v be the optimal values of the primal and the dual problems: 

∗OP : z = minimumx f(x) 

s.t.	 gi(x) ≤ 0, i  = 1, . . . , m  

x ∈ P, 

∗	 ∗D :  v = maximumu L (u) 

s.t.	 u ≥ 0 

Theorem 9.1 Weak Duality Theorem: If ¯	 u isx is feasible for OP and ¯
feasible for D, then 

x) ≥ L ∗(¯f(¯ u) 
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In particular, 
∗ ∗ z ≥ v . 

Proof: If ¯	 u is feasible for D, then x is feasible for OP and ¯

T	 T x) ≥ f(¯ u x) ≥ min f(x) +  ̄ g(x) =  L ∗(¯f(¯ x) +  ̄ g(¯	 u u) . 
x∈P 

∗ ∗Therefore z ≥ v . 
q.e.d. 

10	 The Column Geometry of the Primal and Dual 
Problems 

For this section only, we will assume that our constraints are all equality 
constraints, and so our problems are: 

∗OP :	 z = minimumx f(x) 

s.t. gi(x) = 0, i  = 1, . . . , m  

x ∈ P, 

∗	 ∗D : 	 v = maximumu L (u) 

> 
s.t. u < 0 

where 
∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ P 
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{ } 

Let us consider the primal problem from a “resource-cost” point of view. 
For each x ∈ P , we have an array of resources and costs associated with x, 
namely: 

    
r1 g1(x) 

 r2   g2(x)      r  .   .  g(x)
=  ..  =  .  = 

z    .  f(x) 
. 

   gm(x) rm 

z f(x) 

We can think of each of these arrays as an array of resources and cost in 
	m+1 . If we plot all of these arrays over all values of x ∈ P , we will obtain 
a region in 	m+1, which we will call the region S: 

m+1S := (r, z) ∈ 	 | (r, z) = (g(x), f(x)) for some x ∈ P . 

This region is illustrated in Figure 10. 

r = 0 

r1 

r2 

z 

H 

S 

L = {( r, z ) | r = 0 } 

Figure 10: The column geometry of the primal and dual problem. 
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Where is the feasible region of the primal in this problem? Well, we are 
in the wrong space to observe this. But notice that the figure contains the 
origin and a vertical line L going up from the origin. The points on this 
vertical line have resource utilization of 0, and their costs are their heights 
on the vertical line. Therefore, every point in the intersection of S and L 
corresponds to a feasible solution, and the feasible solution with the lowest 
cost corresponds to the lowest point on the intersection of S and L. We  
re-state this for emphasis: 

Every point in the intersection of S and L corresponds to a feasible solu
tion of OP, and the feasible solution with the lowest cost corresponds to the 
lowest point in the intersection of S and L. This lowest value is exactly the 

∗value of the primal problem, namely z . 

In Figure 10, notice that there is also drawn a hyperplane H, and that 
this hyperplane H lies below the region S. Suppose that we try to find 
that hyperplane H lying below S whose intersection with L is as large as 
possible. Let us formulate this problem mathematically. We will let 

m+1H = Hu,α = (r, z) ∈ 	 | z + u T r = α . 

The line L is: 
m+1L = (r, z) ∈ 	 | r = 0  . 

The intersection of Hu,α with L is: 

H ∩ L 

and it occurs at the point 

(r, z) = (0, α) . 

Then the problem of determining the hyperplane Hu,α lying below S whose 
intersection with L is the highest is: 
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maximumu,α α 

s.t. Hu,α lies below S 

= maximumu,α α 

s.t. z + uT r ≥ α, for all (r, z) ∈ S 

= maximumu,α α 

s.t. f (x) +  uT g(x) ≥ α, for all x ∈ P 

= maximumu,α α 

∗s.t. L (u) ≥ α, 

∗=  maximumu L (u) 

and this last expression is exactly the dual problem (for the special case of 

this section). Therefore: 

The dual problem corresponds to finding that hyperplane Hu,α lying below 
S whose intersection with L is the highest. This highest value is exactly the 

∗value of the dual problem, namely v . 
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11 Strong Duality 

When the set S is a convex set, then generally speaking, we would expect 
∗ ∗ z = v , that is, the primal and the dual have identical optimal objective 

function values. When the set S is not convex, we would not necessarily 
expect this to happen, see the illustrations in Figures 11 and 12. 

S 

Lz 

r 

H 

r = 0 

Figure 11: The column geometry of the dual problem when S is convex.


S 

Lz 

r 

H 

z* 

v* 

Figure 12: The column geometry of the dual problem when S is not convex. 

As it turns out, convexity is the key to strong duality. When the problem 
OP is a convex program, then strong duality will hold in general, as the 
following theorem states: 
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Theorem 11.1 Strong Duality Theorem: Suppose that OP is a convex 
optimization problem, that is, all constraints of OP are of the form gi(x) ≤ 
0, i  = 1, . . . , m, f(x) as well as gi(x) are convex functions, i = 1, . . . , m, and  

∗ ∗P is a convex set. Then under very mild additional conditions, z = v . 

12 Duality Strategies 

12.1 Dualizing “Bad” Constraints 

Suppose we wish to solve: 

TOP : minimumx c x 

s.t. Ax ≤ b 

Nx  ≤ g .  

Suppose that optimization over the constraints “Nx  ≤ g” is easy, but 
that the addition of the constraints “Ax ≤ b” makes the problem much more 
difficult. This can happen, for example, when the constraints “Nx  ≤ g” are  
network constraints, and when “Ax ≤ b” are non-network constraints in the 
model. 

Let

P = {x | Nx  ≤ g}


and re-write OP as: 

TOP : minimumx c x 

s.t. Ax ≤ b 

x ∈ P .  

The Lagrangian is: 
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{	 } 

TL(x, u) =  c x + u T (Ax − b) =  −u T b + (c T + u T A)x ,  

and the dual function is: 

∗L (u) :=	 minimumx −uT b + (cT + uT A)x 

s.t.	 x ∈ P .  

∗Notice that L (u) is easy to evaluate for any value of u, and  so  we  can  
attempt to solve OP by designing an algorithm to solve the dual problem: 

∗D :  maximumu L (u) 

s.t. u ≥ 0 . 

12.2 Dualizing A Large Problem into Many Small Problems 

Suppose we wish to solve: 

2OP : minimum 1 2 (c1)T x1 +(c2)T xx ,x

B1 1 2s.t.	 x +B2x ≤ d 

A1 1x ≤ b1 

A2 2x ≤ b2 

Notice here that if it were not for the constraints “B1x1 + B2x2 ≤ d”, 
that we would be able to separate the problem into two separate problems. 
Let us dualize on these constraints. Let: 

1P = (x , x  2) | A1 x 1 ≤ b1, A2 x 2 ≤ b2 
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and re-write OP as: 
2OP : minimum 1 2 (c1)T x1 +(c2)T xx ,x

B1 1 2s.t.	 x +B2x ≤ d 

(x1, x2) ∈ P 

The Lagrangian is:


L(x, u) = (c1)T x1 + (c2)T x2 + uT (B1x1 + B2x2 − d)


2
= −uT d + ((c1)T + uT B1)x1 + ((c2)T + uT B2)x , 

and the dual function is: 
∗	 2L (u) =  minimum 	1,x2 −uT d + ((c1)T + uT B1)x1 + ((c2)T + uT B2)xx

s.t.	 (x1, x2) ∈ P 

which can be re-written as: 

∗L (u) =  −uT d 

1+ minimumA1x1≤b1 ((c1)T + uT B1)x

2+ minimumA2x2≤b2 ((c2)T + uT B2)x

∗Notice once again that L (u) is easy to evaluate for any value of u, and  
so we can attempt to solve OP by designing an algorithm to solve the dual 
problem: 

∗D :  maximumu L	 (u) 

s.t. u ≥ 0 
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13	 Illustration of Lagrange Duality in Discrete Op-
timization 

In order to suggest the computational power of duality theory and to illus-
trate duality constructs in discrete optimization, let us consider the simple 
constrained shortest path problem portrayed in Figure 13. 

2 

1 

3 

4 

5 

6 

1 

1 1 

1 

1 

1 

2 

3 

3 

Figure 13: A constrained shortest path problem. 

The objective in this problem is to find the shortest (least cost) path 
from node 1 to node 6 subject to the constraint that the chosen path uses 
exactly four arcs. In an applied context the network might contain millions 
of nodes and arcs and billions of paths. For example, in one application 
setting that can be solved using the ideas considered in this discussion, each 
arc would have both a travel cost and travel time (which for our example 
is 1 for each arc). The objective is to find the least cost path between a 
given pair of nodes from all those paths whose travel time does not exceed 
a prescribed limit (which in our example is 4 and must be met exactly). 

Table 1 shows that only three paths, namely 1-2-3-4-6, 1-2-3-5-6, and 
1-3-5-4-6 between nodes 1 and 6 contain exactly four arcs. Since path 1-3-
5-4-6 has the least cost of these three paths (at a cost of 5), this path is the 
optimal solution of the constrained shortest path problem. 

Now suppose that we have available an efficient algorithm for solving 
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Path Number of Arcs Cost 
1-2-4-6 3 3 
1-3-4-6 3 5 
1-3-5-6 3 6 

1-2-3-4-6 4 6 
1-2-3-5-6 4 7 
1-3-5-4-6 4 5 

1-2-3-5-4-6 5 6 

Table 1: Paths from node 1 to node 6. 

(unconstrained) shortest path problems (indeed, such algorithms are readily 
available in practice), and that we wish to use this algorithm to solve the 
given problem. 

Let us first formulate the constrained shortest path problem as an integer 
program: 

CSPP : 

z ∗ = minxij x12 +x13 +x23 +x24 +3x34 +2x35 +x54 +x46 +3x56 

s.t. x12 +x13 +x23 +x24 +x34 +x35 +x54 +x46 +x56 = 4  

x12 +x13 = 1  

x12 −x23 −x24 = 0  

x13 +x23 −x34 −x35 = 0  

x24 +x34 +x54 −x46 = 0  

x35 −x54 −x56 = 0  

x46 +x56 = 1  

xij ∈ {0, 1} for all xij . 
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In this formulation, xij is a binary variable indicating whether or not 
arc i − j is chosen as part of the optimal path. The first constraint in this 
formulation specifies that the optimal path must contain exactly four arcs. 
The remaining constraints are the familiar constraints describing a shortest 
path problem. They indicate that one unit of flow is available at node 1 and 
must be sent to node 6; nodes 2, 3, 4, and 5 act as intermediate nodes that 
neither generate nor consume flow. Since the decision variables xij must 
be integer, any feasible solution to these constraints traces out a path from 
node 1 to node 6. The objective function determines the cost of any such 
path. 

Notice that if we eliminate the first constraint from this problem, then 
the problem becomes an unconstrained shortest path problem that can be 
solved by our available algorithm. Suppose, for example, that we dualize 
the first (the complicating) constraint by moving it to the objective function 
multiplied by a Lagrange multiplier u. The objective function then becomes: 

  

minimumxij cij xij + u 4 − xij 
i,j i,j 

and collecting the terms, the modified problem becomes: 
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� 

∗L (u) = minxij (1 − u)x12 + (1  − u)x13 + (1  − u)x23


+(1 − u)x24 + (3  − u)x34 + (2  − u)x35


+(1 − u)x54 + (1  − u)x46 + (3  − u)x56 + 4u


s.t. 

x12 +x13 = 1  

x12 −x23 −x24 = 0  

x13 +x23 −x34 −x35 = 0  

x24 +x34 +x54 −x46 = 0  

x35 −x54 −x56 = 0  

x46 +x56 = 1  

xij ∈ {0, 1} for all xij . 

∗Let L (u) denote the optimal objective function value of this problem, 
for any given multiplier u. 

Notice that for a fixed value of u, 4u is a constant and the problem 
becomes a shortest path problem with modified arc costs given by 

= cij − u .cij 

Note that for a fixed value of u, this problem can be solved by our 
available algorithm for the shortest path problem. Also notice that for any 

∗ ∗fixed value of u, L (u) is a lower bound on the optimal objective value z to 
the constrained shortest path problem defined by the original formulation. 
To obtain the best lower bounds, we need to solve the Lagrangian dual 
problem: 
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∗ ∗D :  v = maximumu L (u) 

< 
s.t. u > 0 

To relate this problem to the earlier material on duality, let the decision 
set P be given by the set of feasible paths, namely the solutions of: 

x12 +x13 = 1  

x12 −x23 −x24 = 0  

x13 +x23 −x34 −x35 = 0  

x24 +x34 +x54 −x46 = 0  

x35 −x54 −x56 = 0  

x46 +x56 = 1  

xij ∈ {0, 1} for all xij . 

Of course, this set will be a finite (discrete) set. That is, P is the set of 
paths connecting node 1 to node 6. Suppose that we plot the cost z and the 
number of arcs r used in each of these paths, see Figure 14. 

We obtain the seven dots in this figure corresponding to the seven paths 
listed in Table 1. Now, because our original problem was formulated as a 
minimization problem, the geometric dual is obtained by finding the line 
that lies on or below these dots and that has the largest intercept with the 
feasibility line. Note from Figure 14 that the optimal value of the dual is 
∗ v = 4.5, whereas the optimal value of the original primal problem is z ∗ = 5.  

In this example, because the cost-resource set is not convex (it is simply the 
seven dots), we encounter a duality gap. In general, integer optimization 
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Figure 14: Resources and costs. 

models will usually have such duality gaps, but they are typically not very 
large in practice. Nevertheless, the dual bounding information provided by 
∗ ∗ v ≤ z can be used in branch and bound procedures to devise efficient 

algorithms for solving integer optimization models. 

It might be useful to re-cap. The original constrained shortest path 
problem might be very difficult to solve directly (at least when there are 
hundreds of thousands of nodes and arcs). Duality theory permits us to 
relax (eliminate) the complicating constraint and to solve a much easier 
Lagrangian shortest path problem with modified arc costs cij 

� 
= cij − u. 

∗Solving for any u generates a lower bound L (u) on the  value  z ∗ to the 
∗original problem. Finding the best lower bound maxu L (u) requires that 

we develop an efficient procedure for solving for the optimal u. Duality 
theory permits us to replace a single and difficult problem (in this instance, a 
constrained shortest-path problem) with a sequence of much easier problems 
(in this instance, a number of unconstrained shortest path problems), one 
for each value of u encountered in our search procedure. Practice on a 
wide variety of problem applications has shown that the dual problem and 
subsequent branch and bound procedures can be extremely effective in many 
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applications. 

To conclude this discussion, note from Figure 14 that the optimal value 
for u in the dual problem is u = 1.5. Also note that if we subtract u = 1.5 
from the cost of every arc in the network, then the shortest path (with 
respect to the modified costs) has cost −1.5. Both paths 1-2-4-6 and 1-2-3-
5-4-6 are shortest paths for this modified problem. Adding 4u = 4  × 1.5 = 6  
to the modified shortest path cost of −1.5 gives a value of 6 − 1.5 = 4.5 

∗which equals v . Note that if we permitted the flow in the original problem 
to be split among multiple paths (i.e., formulate the problem as a linear 
optimization problem instead of as an integer optimization problem), then 
the optimal solution would send one half of the flow on both paths 1-2-4-6 
and 1-2-3-5-4-6 and incur a cost of: 

1 1 × 3 +  × 6 = 4.5 .
2 2 

In general, the value of the dual problem is always identical to the value of 

the original (primal) problem if we permit convex combinations of primal 
solutions. This equivalence between convexification and dualization is easy 
to see geometrically. 
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