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1 Block Ladder Structure 

We consider the solution of a linear optimization model of the basic format: 

Tminimizex,y c x + fT y 

s.t.  Ax  = b 

Bx + Dy = d 

x ≥ 0 y ≥ 0 . 

Here the variables x can be thought of as stage-1 decisions, governed by 
constraints Ax = b, x ≥ 0 and with cost function cT x. Once the x variables 
have been chosen, the y variables are chosen next, subject to the constraints 
Dy = d − Bx, y ≥ 0 and with cost function fT y. 

We also consider the more complex format associated with two-stage 
optimization under uncertainty: 

Tminimize c x + α1f1 
T y1 + α2f2 

T y2 + · · ·  + αK f
T 
K yK


x, y1, . . . , yK


s.t.  Ax 


B1x + D1y1


B2x


. 

= b 

= d1 

+ D2y2 = d2 

. . . . . . . . 

BK x + DK yK = dK 

x, y1, y2, . . . , yK ≥ 0 . 

Actually, each of these formats can be thought of as a special case of the 
other format. The more complex format above is known as “block-ladder”, 
and is illustrated in Figure 1. 
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Figure 1: Block ladder structure of two-stage stochastic linear optimization. 

2 Reformulation of the Basic Model 

The basic model format is: 

TVAL = minimumx,y c x + fT y 

s.t.  Ax  

Bx + 

x ≥ 0 

= b 

Dy = d 

y ≥ 0 , 
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whose optimal objective value is denoted by VAL. We re-write this as: 

VAL = minimumx cT x + z(x) 

s.t.  Ax  = b 

x ≥ 0 , 

where: 

P2 : z(x) =  minimumy fT y 

s.t.  Dy  = d − Bx 

y ≥ 0 . 

We call this problem “P2” because it represents the stage-2 decision problem, 
once the stage-1 variables x have been chosen. Applying duality, we can also 
construct z(x) through the dual of P2, which we denote by D2: 

D2 : z(x) =  maximump pT (d − Bx) 

s.t. DT p ≤ f .  

The feasible region of D2 is the set: 

D2 := p | DT p ≤ f 
� 

, 

whose extreme points and extreme rays can be enumerated: 

1 I p , . . . , p  

are the extreme points of P2, and  
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1 J r , . . . , r  

are the extreme rays of P2. 

If we use an algorithm to solve D2, exactly one of two cases will arise: 
D2 is unbounded from above, or D2 has an optimal solution. In the first 
case, the algorithm will find that D2 is unbounded from above, and it will 
return one of the extreme rays ¯ = rj for some j, with the property that r 

(rj )T (d − Bx) > 0 

in which case

z(x) = +∞ .


In the second case, the algorithm will solve D2, and it will return one of the 
extreme points p̄ = pi for some i as well as the optimal objective function 
value z(x) which will satisfy: 

z(x) = (p i)T (d − Bx) =  max (p k )T (d − Bx) . 
k=1,...,I 

Therefore we can re-write D2 again as the following problem: 

D2 : z(x) =  minimumz z 

s.t. (pi)T (d − Bx) ≤ z i = 1, . . . , I  

(rj )T (d − Bx) ≤ 0 j = 1, . . . , J  .  

This problem simply states that the value of D2 is just the dual objective 
function evaluated at the best extreme point of the dual feasible region, pro-
vided that the objective function makes an obtuse angle with every extreme 
ray of the dual feasible region. 
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We now take this reformulation of z(x) and place it in the orginal prob-
lem: 

TFMP : VAL = minimumx,z c x + z 

s.t.  Ax  = b 

x ≥ 0 

(pi)T (d − Bx) ≤ z i = 1, . . . , I  

(rj )T (d − Bx) ≤ 0 j = 1, . . . , J  .  

We call this problem FMP for the full master problem. Comparing FMP 
to the original version of the problem, we see that we have eliminated the 
variables y from the problem, we have added a single scalar variable z, and  
we have also added a generically extremely large number of constraints. 

3 Delayed Constraint Generation 

The idea behind delayed constraint generation is to try to solve FMP using 
only a small subset of the constraints, and to check afterward whether any 
of the non-included constraints are violated. 

Consider the restricted master problem RMP composed of only k of the 
extreme point / extreme ray constraints from FMP: 

TRMPk :  VALk = minimumx,z c x + z 

s.t.  Ax  = b 

x ≥ 0 

(pi)T (d − Bx) ≤ z i = 1, . . . , k − l 

(rj )T (d − Bx) ≤ 0 j = 1, . . . , l  .  
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We solve this problem, obtaining the optimal objective value VALk and 
¯the solution x, z̄ that is optimal for this problem. We first observe that 

VALk is a lower bound on VAL, i.e.: 

VALk ≤ VAL . 

In order to check whether the solution x̄, z̄ is optimal for the full mas-
ter problem, we must check whether x, z̄ violates any of the non-included ¯
constraints. We check for this by solving the linear optimization problem: 

x) :  =  maximump pT (d − B ̄Q(¯ x)  =  minimumy fT y 

s.t. DT p ≤ f s.t. Dy  = d − B ̄

y ≥ 0 . 

x) is unbounded, the algorithm will return an extreme ray ¯If Q(¯ r = rj 

for some j, where x̄ will satisfy: 

(rj )T (d − Bx̄) > 0 . 

We therefore have found that x̄ has violated the constraint: 

(rj )T (d − Bx) ≤ 0 , 

and so we add this constraint to RMP and re-solve RMP. 

If Q(x̄) has an optimal solution, the algorithm will return an optimal 
iextreme point p̄ = p for some i, as well as the optimal solution ȳ to the 

minimization problem of Q(x̄). 
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Now notice first from Q(¯ x, ¯x) that (¯ y) is feasible for the original problem. 
Therefore, if UB is a previously computed upper bound on VAL, we can 
update the upper bound and our “best” feasible solution as follows: 

T ¯ x, ¯If c x + f T ȳ ≤ UB, then BESTSOL ← (¯ y) . 

T ¯UB ← min{UB, c  x + f T ȳ} . 

Also, notice that if:


(p i)T (d − B ̄ z , 
x) > ¯

then we have found that x̄, z̄ has violated the constraint: 

(p i)T (d − Bx) ≤ z ,  

and so we add this constraint to RMP and re-solve RMP. 

If (pi)T (d − B ̄x) ≤ z̄, then we have: 

max (p k )T (d − B ̄ x) ≤ ¯x) = (p i)T (d − B ̄ z ,  
k=1,...,I 

x, z̄ is feasible and hence optimal for FMP, and so (¯ y) is optimal and so ¯ x, ¯
for the original problem, and so we terminate the algorithm. 

By our construction of upper and lower bounds on VAL, we can also 
terminate the algorithm whenever: 

UB − VALk ≤ ε 

for a pre-specified tolerance ε. 
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3.1 Delayed Constraint Generation Algorithm 

Here is a formal description of the algorithm just described. 

0.	 Set LB= −∞ and UB= +∞. 

1.	 A typical iteration starts with the relaxed master problem RMPk , in  
which only k constraints of the full master problem FMP are included. 
An optimal solution x̄, z̄ to the relaxed master problem is computed. 
We update the lower bound on VAL: 

LB ← VALk . 

2.	 Solve the subproblem Q(x̄): 

x) :  maximump pT (d − B ̄Q(¯	 x)  =  minimumy f T y 

s.t. DT p ≤ f	 s.t. Dy  = d − B ̄x 

y ≥ 0 . 

3.	 If Q(x̄) has an optimal solution, let p̄ and ȳ be the primal and dual 
solutions of Q(¯ pT (d − B ̄ x, z̄ satisfies all constraints x). If ¯ x) ≤ z̄, then ¯

of FMP, and so ¯
x, z̄ is optimal for FMP. Furthermore, this implies that 
(¯ y) is optimal for the original problem. x, ¯

pT (d − B ̄If ¯ x) > z̄, then we add the constraint: 

p̄T (d − Bx) ≤ z 

to the restricted master problem RMP.


Update the upper bound and the best solution:
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T ¯ x, ȳ)If c x + f T ȳ ≤ UB, then BESTSOL ← (¯

T ¯UB ← min{UB, c  x + f T ȳ} 

If UB − LB ≤ ε, then terminate. Otherwise, return to step 1. 

4. If Q(¯ r be the extreme ray generated x) is unbounded from above, let ¯

by the algorithm that solves Q(¯
x). Add the constraint: 

r̄T (d − Bx) ≤ 0 

to the restricted master problem RMP, and return to step 1. 

This algorithm is known formally as Benders’ decomposition. The Ben-
ders’ decomposition method was developed in 1962 [2], and is described in 
many sources on large-scale optimization and stochastic programming. A 
general treatment of this method can be found in [3, 4]. 

The algorithm can be initialized by first computing any x̄ that is feasible 
for the first stage, that is, A¯ = b, ¯x x ≥ 0, and by choosing the value of z̄
to be −∞ (or any suitably small number). This will force (¯ z) to violate x, ¯
some constraints of FMP. 

Notice that the linear optimization problems solved in Benders’ decom-
position are “small” relative to the size of the original problem. We need 
to solve RMPk once every outer iteration and we need to solve Q(x̄) once  
every outer iteration. Previous optimal solutions of RMPk and Q(x̄) can  
serve as a starting basis for the current versions of RMPk and Q(x̄) if we  
use the simplex method. Because interior-point methods do not have the 
capability of starting from a previous optimal solution, we should think of 
Benders’ decomposition as a method to use in conjunction with the simplex 
method primarily. 

Incidentally, one can show that Benders’ decomposition method is the 
same as Dantzig-Wolfe decomposition applied to the dual problem. 
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4	 Benders’ Decomposition for Problems with Block-
Ladder Structure 

Suppose that our problem has the complex block-ladder structure of the 
following optimization model that we see for two-stage optimization under 
uncertainty: 

TVAL = minimize c x + α1f1 
T y1 + α2f2 

T y2 + · · ·  + αK f
T 
K yK 

x, y1, . . . , yK 

s.t.  Ax 


B1x + D1y1


B2x


. 

= b 

= d1 

+ D2y2 = d2 

. . .	 . . . . . 

BK x + DK yK = dK 

x, y1, y2, . . . , yK ≥ 0 . 

whose optimal objective value is denoted by VAL. We re-write this as: 

K 
TVAL = minimumx c x + αω zω (x) 

ω=1 

s.t.  Ax  = b 

x ≥ 0 , 

where: 

11 



� � 

P2ω : zω (x) =  minimumyω fT 
ω yω 

s.t. Dω yω = dω − Bω x 

yω ≥ 0 . 

We call this problem “P2ω ” because it represents the stage-2 decision prob-
lem under scenario ω, once the stage-1 variables x have been chosen. Ap-
plying duality, we can also construct zω (x) through the dual of P2ω , which 
we denote by D2ω : 

TD2ω : zω (x) =  maximumpω pω (dω − Bω x) 

s.t. DT 
ω pω ≤ fω . 

The feasible region of D2ω is the set: 

ωD2 := pω | DT 
ω pω ≤ fω , 

whose extreme points and extreme rays can be enumerated:


1 Iωpω , . . . , pω 

ωare the extreme points of D2 , and 


1 Jωrω , . . . , rω 

ωare the extreme rays of D2 .


If we use an algorithm to solve D2ω , exactly one of two cases will arise: 
D2ω is unbounded from above, or D2ω has an optimal solution. In the first 
case, the algorithm will find that D2ω is unbounded from above, and it will 
return one of the extreme rays ¯ jrω = rω for some j, with the property that 
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(rj 
ω )

T (dω − Bω x) > 0 

in which case

zω (x) = +∞ .


In the second case, the algorithm will solve D2ω , and it will return one of the 
extreme points p̄ω = pi for some i as well as the optimal objective function ω 
value zω (x) which will satisfy: 

i k zω (x) = (pω )
T (dω − Bω x) =  max (pω )

T (dω − Bω x) . 
k=1,...,Iω 

Therefore we can re-write D2ω again as the following problem: 

D2ω : zω (x) =  minimumzω zω 

is.t. (pω )
T (dω − Bω x) ≤ zω i = 1, . . . , Iω 

j(rω )T (dω − Bω x) ≤ 0 j = 1, . . . , Jω . 

This problem simply states that the value of D2ω is just the dual objective 
function evaluated at the best extreme point of the dual feasible region, pro-
vided that the objective function makes an obtuse angle with every extreme 
ray of the dual feasible region. 

We now take this reformulation of zω (x) and place it in the orginal 
problem: 
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K 
TFMP : VAL = minimum c x + αω zω


ω=1

x, z1, . . . , zK


s.t.  Ax  = b 

x ≥ 0 

i(pω )
T (dω − Bω x) ≤ zω i = 1, . . . , Iω , ω  = 1, . . . , K  

j(rω )T (dω − Bω x) ≤ 0 j = 1, . . . , Jω , ω  = 1, . . . , K  .  

We call this problem FMP for the full master problem. Comparing 
FMP to the original version of the problem, we see that we have eliminated 
the vector variables y1, . . . , yK from the problem, we have added K scalar 
variables zω for ω = 1, . . . , K, and we have also added a generically extremely 
large number of constraints. 

As in the basic model, we consider the restricted master problem RMP 
composed of only k of the extreme point / extreme ray constraints from 
FMP: 

K 
TRMPk : VALk = minimum c x + αω zω


ω=1

x, z1, . . . , zK


s.t.  Ax  = b 

x ≥ 0 

i(pω )
T (dω − Bω x) ≤ zω for some i and ω 

j(rω )T (dω − Bω x) ≤ 0 for some i and ω ,  

where there are a total of k of the inequality constraints. We solve this prob-
lem, obtaining the optimal objective value VALk and the solution ¯ z1, . . . , z̄Kx, ¯
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that is optimal for this problem. We first observe that VALk is a lower bound 
on VAL, i.e.: 

VALk ≤ VAL . 

In order to check whether the solution x, ¯¯ z1, . . . , z̄K is optimal for the 
full master problem, we must check whether x, ¯¯ z1, . . . , z̄K violates any of 
the non-included constraints. We check for this by solving the K linear 
optimization problems: 

TQω (¯ ¯ ω yωx) :  = maximumpω pω (dω − Bω x)  =  minimumyω fT 

s.t. DT ¯ω pω ≤ fω s.t. Dω yω = dω − Bω x 

yω ≥ 0 . 

x) is unbounded, the algorithm will return an extreme ray ¯ jIf Qω (¯ rω = rω 

for some j, where x̄ will satisfy: 

j(rω )
T (dω − Bω x) > 0 .¯

We therefore have found that x̄ has violated the constraint: 

j(rω )
T (dω − Bω x) ≤ 0 , 

and so we add this constraint to RMP. 

If Qω (x̄) has an optimal solution, the algorithm will return an optimal 
pω = pi for some i, as well as the optimal solution ¯extreme point ¯ yω of the ω 

minimization problem of Qω (x̄).


If

i ¯(pω )

T (dω − Bω x) > z̄ω , 
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x, ¯then we have found that ¯ zω has violated the constraint: 

i(pω )
T (dω − Bω x) ≤ zω , 

and so we add this constraint to RMP. 

If Qω (x̄) has finite optimal objective function values for all ω = 1, . . . , K, 
then x, ¯¯ y1, . . . , ȳK satisfies all of the constraints of the original problem. 
Therefore, if UB is a previously computed upper bound on VAL, we can 
update the upper bound and our “best” feasible solution as follows: 

K 
T ¯ x, ¯If c x + αω fω

T ȳω ≤ UB, then BESTSOL ← (¯ y1, . . . , ȳK ) .

ω=1


K 
T ¯UB ← min{UB, c  x + αω fω

T ȳω } . 
ω=1 

iIf (pω )
T (dω − Bω x) ≤ z̄ω for all ω = 1, . . . , K, then we have: ¯

l i¯ ¯max (pω )
T (dω − Bω x) = (pω )

T (dω − Bω x) ≤ z̄ω for all ω = 1, . . . , K  ,  
l=1,...,Iω 

x, ¯ x, ¯and so ¯ z1, . . . , z̄K satisfies all of the constraints in FMP. Therefore, ¯ z1, . . . , z̄K 

is feasible and hence optimal for FMP, and so (¯ y1, . . . , ȳK ) is optimal for x, ¯
the original problem, and we can terminate the algorithm. 

Also, by our construction of upper and lower bounds on VAL, we can 
also terminate the algorithm whenever: 

UB − VALk ≤ ε 

for a pre-specified tolerance ε. 
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4.1	 The Delayed Constraint Generation Algorithm for Prob-
lems with Block-Ladder Structure 

Here is a formal description of the algorithm just described for problems 
with block-ladder structure. 

0.	 Set LB= −∞ and UB= +∞. 

1.	 A typical iteration starts with the relaxed master problem RMPk , in 

which only k constraints of the full master problem FMP are included.

An optimal solution x, ¯
¯ z1, . . . , z̄K to the relaxed master problem is 
computed. We update the lower bound on VAL: 

LB ← VALk . 

2.	 For ω = 1, . . . , K, solve the subproblem Qω (x̄): 

Tx) :  = maximumpω pω (dω − Bω x) =  minimumyω fTQω (¯	 ¯ ω yω 

s.t. DT	 ¯ω pω ≤ fω	 s.t. Dω yω = dω − Bω x 

yω ≥ 0 . 

– If Qω (x̄) is unbounded from above, let r̄ω be the extreme ray 
generated by the algorithm that solves Q(x̄). Add the constraint: 

T r̄ω (dω − Bω x) ≤ 0 

to the restricted master problem RMP. 

– If Qω (¯	 pω and ¯x) has an optimal solution, let ¯ yω be the primal and 
ix). If (pω )

T (dω − Bω x) > z̄ω , then we add dual solutions of Qω (¯	 ¯
the constraint: 
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T p̄ω (dω − Bω x) ≤ zω 

to the restricted master problem RMP. 

i ¯	 x, ¯3.	 If (pω )
T (dω − Bω x) ≤ z̄ω for all ω = 1, . . . , K, then (¯ y1, . . . , ȳK ) is  

optimal for the original problem, and the algorithm terminates. 

4.	 If Qω (x̄) has an optimal solution for all ω = 1, . . . , K, then update the 
upper bound on VAL as follows: 

K 
T ¯	 x, ¯If c x + αω fω

T ȳω ≤ UB, then BESTSOL ← (¯ y1, . . . , ȳK ) . 
ω=1 

K 
T ¯UB ← min{UB, c  x + αω fω

T ȳω } . 
ω=1 

If UB − LB ≤ ε, then terminate. Otherwise, add all of the new 
constraints to RMP and return to step 1. 

In this version of Benders’ decomposition, we might add as many as K 
new constraints per major iteration. 

5 The Power Plant Investment Model 

Recall the power plant investment model described earlier. The full model 
is: 
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4 125 5 5 15 

min cixi + αω 0.01fi(ω)hj yijkω 
x,y 

i=1 ω=1 i=1 j=1 k=1 

4 

s.t.	 cixi ≤ 10, 000 (Budget constraint)

i=1


x4 ≤ 5.0 (Hydroelectric constraint) 
yijkω ≤ xi for i = 1, . . . , 4, all j, k, ω (Capacity constraints) 

5 

yijkω ≥ Djkω for all j, k, ω (Demand constraints) 
i=1 

x ≥ 0, y  ≥ 0 
(1) 

where αω is the probability of scenario ω, and  Djkω is the power demand in 
block j and year k under scenario ω. 

This model has 4 stage-1 variables, and 46,875 stage-2 variables. Further-
more, other than nonnegativity constraints, there are 2 stage-1 constraints, 
and 375 constraints for each of the 125 scenarios in stage-2. This yields 
a total of 46, 877 constraints. It is typical for problems of this type to be 
solved by Benders’ decomposition, which exploits the problem structure by 
decomposing it into smaller problems. 

Consider a fixed x which is feasible (i.e., x ≥ 0 and satisfies the budget 
constraint and hydroelectric constraint). Then the optimal second-stage 
variables yijkω can be determined by solving for each ω the problem: 

5 5 15 

zω(x) � min 
y 

i=1 j=1 k=1 

0.01fi(ω)hj yijkω 

subject to yijkω ≤ xi for i = 1, . . . , 4, all j, k, (Capacity constraints) 
5 � 

yijkω ≥ Djkω for all j, k (Demand constraints) 
i=1 

y ≥ 0. 
(2) 
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Although this means solving 125 problems (one for each scenario), each 
subproblem has only 375 variables and 375 constraints. (Furthermore, the 
structure of this problem lends itself to a simple greedy optimal solution.) 

The dual of the subproblem (2) is: 

4 5 15 5 15 � � � � � 
zω(x) � max 

p,q 
i=1 j=1 k=1 

xipijkω + 
j=1 k=1 

Djkωqjkω 

subject to pijkω + qjkω ≤ 0.01fi(ω)hj i = 1, . . . , 4, for all j, k (3) 

pijkω ≤ 0 

qjkω ≥ 0. 

6 Computational Results 

All models were solved in OPLStudio on a Sony Viao Laptop with a Pentium 
III 750 MHz Processor Running Windows 2000. Table 1 shows the number 
of iterations taken by the simplex method to solve the original model. 

Original Model CPT Time 
Iterations (minutes:seconds) 

Simplex 41,334 5:03 

Table 1: Iterations to solve the original model. 

We next solved the problem using Benders’ decomposition, using a du-
ality gap tolerance of ε = 10−2 . We first solved the model treating all 
stage-2 variables and constraints as one large block, using the basic Ben-
ders’ decomposition algorithm. We next solved the model treating each of 
the 125 stage-2 scenarios as a separate block, using the more advanced ver-
sion of Benders’ decomposition that takes full advantage of the block-ladder 
structure. The number of master iterations and the number of constraints 
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generated by the two different solution methods are shown in Table 2. Notice 
that while the block-ladder version generates more constraints, it requires 
fewer major iterations. Table 3 shows the computation times of all of the 
solution methods. From this table, it is evident that the method that takes 
full advantage of the block-ladder structure was the most efficient solution 
method. 

Benders’ Decomposition 
Basic (1 Block) Block-Ladder (125 Blocks) 

Master Iterations 39 15 
Generated Constraints 39 1,875 

Table 2: Master iterations and generated constraints for the two implemen-
tations of Benders’ decomposition. 

No Decomposition Benders’ Decomposition 
Original Model Basic (1 Block) Block-Ladder (125 Blocks) 

CPU Time 
(min:sec) 5:03 3:22 1:27 

Table 3: Computation times (min:sec) for the original model and the two 
implementations of Benders’ decomposition. 

Figure 2 shows the the upper and lower bounds generated by Benders’ 
decomposition at each iteration. Notice that there is initial rapid conver-
gence of the bounds to the optimal objective function value, followed by 
very slow convergence thereafter. This is typical pattern that is observed in 
decomposition methods in general. Figure 3 shows the duality gap between 
the upper and lower bounds on a logarithmic scale. Here we see that the 
convergence rate of the duality gap is roughly linear. 
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Figure 2: Upper and lower bounds for Benders’ decomposition. 

7 Exercise 

The current version of the powerplant planning model uses the strategy 
of adding one constraint for every scenario in the model at each iteration 
of the Benders’ decomposition method. This means that k = 125 new 
constraints are added to the model at each outer iteration of the method. 
As discussed in class, this strategy outperforms the alternative strategy of 
adding only k = 1 new constraint at each outer iteration of the model. In 
this question, you are asked to explore intermediate strategies that might 
improve computation time for solving the powerplant planning model using 
Benders’ decomposition. 

By adding your own control logic in the region indicated in the script 
file, bender1.osc, experiment with different strategies for limiting and/or 
controlling the number of new constraints added to the model at each outer 
iteration. You may also modify the model files or the data file if neces-
sary. (One strategy that you might try would be to add a fixed number of 

22 



5
10

U
pp

er
 b

ou
nd

 −
 lo

w
er

 b
ou

nd
 

4
10

3
10

2
10

1
10

0
10

−1
10

−2
10

Block Ladder 125 Blocks 
Basic − 1 Block 

0 5 10 15 20 25 30 35 40 
Iteration 

Figure 3: Gap between upper and lower bounds for Benders’ decomposition. 

constraints, say k = 10, 20, or 30, etc., constraints per outer iteration.) 
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