
15.094/SMA5223 Systems Optimization: Models and Computation 

Assignment 5 (100 p o i n ts) 

Due April 27, 2004 

1 Some Convex Analysis (20 p o i n ts) 

(a) Given positive scalars L and E, consider the following set in three-dimensional space: 

( ) 

L2 

S = (f; t; s) j f2 � s � t ; s � 0 ; t � 0 : 

E 

This set arises in the optimization of load bearing truss structures that you have seen in 

the lectures on truss design. Show that S is a convex set. 

(b) Let Sk�k denote the set of k � k square symmetric matrices. A matrix X 2 Sk�k is 

symmetric positive semide�nite (SPSD) if 

vT Xv � 0 for all v 2 < 

k : 

Let Sk�k denote the set of k � k SDSD matrices. Prove that Sk�k is a convex set. + + 

(c) A matrix X 2 Sk�k is symmetric positive de�nite (SPD) if 

vT X v > 0 for all v 2 < 

k; v 6= 0 : 

Let Sk�k denote the set of k � k SPD matrices. Prove that Sk�k is a convex set. ++ ++ 

2 Truss Design (20 p o i n ts) 

The purpose of this problem is to give y ou some experience in solving truss design models 

using AMPL and LOQO. Figure 1 shows an 11 � 8 grid for a bridge design problem. The 

left and right bottom points in the grid, which are the ordered pairs (0; 0) and (10; 0), are 

�xed points in the grid. There is a downward force at each grid point on the bottom row 

of the grid. 

The AMPL model �le bridge18soc.mod contains a truss design model of this bridge 

design problem (modeled using the second-order cone formulation discussed in class) that 

uses the data �le basic18.dat . 
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Figure 1: An 11 � 8 bridge design grid. 

(a) Run this model using LOQO. What is the optimal compliance? What is the running 

time? How m a n y iterations did the algorithm take? 

(b) Create and hand in a picture of the optimal solution using the MATLAB �le respm.m. 

(c) In reality, structures need to b e designed to handle many di�erent external forces. 

For example, the bridge should b e designed to handle forces from winds in various 

directions that may shift over time as well as vary in intensity. In order to see how 

sensitive the optimal solution might b e to di�erent external forces, we ask you to 

try several di�erent external force (load) pro�les on the bottom of the bridge. As a 

common basis of comparison use the following external loads: 

 ! � � � � � � � � � � � � � � � � � � 

0 0 0 0 0 0 0 0 0 

(i) F = ; ; ; ; ; ; ; ; 

�2 �2 �2 �4 �4 �4 �2 �2 �2  ! � � � � � � � � � � � � � � � � � � 

0 0 0 0 0 0 0 0 0 

(ii) F = ; ; ; ; ; ; ; ; 

�4 �4 �4 �2 �2 �2 �4 �4 �4  ! � � � � � � � � � � � � � � � � � � 

0 0 0 0 0 0 0 0 0 

(iii) F = ; ; ; ; ; ; ; ; 

�4 �4 �4 �4 �4 �4 �4 �4 �4  ! � � � � � � � � � � � � � � � � � � 

0 0 0 0 0 0 0 0 0 

(iv) F = ; ; ; ; ; ; ; ; 

�2 �2 �2 �4 �4 �4 �4 �4 �4   
1p 

!  
1p 

!  
1p 

!  
2p 

!  
2p 

!  
2p 

!  
1p 

!  
1p 

!  
1p 

!! 

2 2 2 2 2 2 2 2 2(v) F = ; ; ; ; ; ; ; ; 

2 

p 
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p 
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p 

2 

p�1 �1 �1 �2 �2 �2 �1 �1 �1

(c) What do you observe? How might y ou take l o a d v ariations into account when solving 

this problem in practice? 
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3 Truss Design Formulations (20 p o i n ts) 

In this problem, you are asked to explore possible changes in the the model parameters and 

in the formulation for the bridge design model shown in Figure 1. 

(a)	 Maximum Volume Constraint. The current total volume constraint upper bound 

is 1,600.0 units. Change this bound to values between 100.0 units and 100,000.0 units 

and solve the resulting model. Record the optimized compliance and the numb e r 

of iterations it takes to solve the model as functions of the volume constraint upper 

bound. What do you observe? Can you suggest any reasons for this? 

(b)	 Tolerance Parameter �. If the value of the Young's modulus is E = 1 :0, then the 

second-order cone constraint in the truss design problem is of the form: 

q 

L2f2 + y2 � w : 

However, you will notice in the AMPL �le bridge6soc.mod that the constraint i n t h e 

model is actually: 

q 

�2 + L2f2 + y2 � w ; 

where � is a tolerance parameter given in the input data �le basic6.dat . The value 

of � given in basic6.dat is � = 0 :000001 . If � = 0 :0, then the AMPL model is the 

same as the true formulation of the problem. If � > 0, then the AMPL model will have 

a slightly smaller feasible region than the true model of the problem. The purpose of 

introducing � > 0 is to speed up solution time by \smoothing" the second-order cone 

constraint a b i t . 

Change the value of the tolerance parameter � in the range from � = 0 :00000001 up 

to � = 1:0 and solve the resulting model. Record the optimal compliance and the 

number of iterations it takes to solve the model as functions of the value of �. What 

do you observe? Can you suggest any reasons for this? 

4 High-Percentage Covering Disk Problem (20 p o i n ts) 

Consider the problem of determining the smallest disk that contains the m given points 

c1; : : : ; cm. The decision variables in the problem are the center x and the radius R of the 

enclosing disk, and the problem yields the simple formulation: 
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CDP :	 minimizex;R 

R 

s.t. kx � cik � R i = 1 ; : : : ;m 

nx 2 < ; R 2 < ; 

where in this case n = 2 is the dimension in which the problem arises. 

The Ampl �le CDPql.mod contains a reformulation of this problem with quadratic 

objective and linear constraints. CDPql2.mod is the same formulation but demonstrates 

the problem command in Ampl. The Ampl �le CDPlq.mod contains the version of the 

problem with a linear objective and quadratic constraints. All of these formulations of the 

problem solve v ery rapidly, with zero duality g a p . 

(a) The data �les cover18.dat and cover19.dat each contain the locations of 100 points 

in n = 2 dimensions. The �rst column in the �le is the index of the p o i n t, and the 

second and third columns contain the �rst and second coordinates of the point. Solve 

the problem using these data sets, and create �gures illustrating your solution. 

Solve CDPql2.mod with the LOQO convex option turned on and o�. Is there 

a di�erence in how LOQO solves the problem? If so, why? 

Solve CDPlq.mod with the LOQO convex option turned on and o�. Is there a 

di�erence in how LOQO solves the problem? If so, why? 

(b) Consider the following variation of the problem, where we would like to �nd the 

smallest disk that contains 90% of the points. This problem arises in data mining, for 

example. We will use the sigmoid function: 

1 

f�(s) := 

e��s1 + 

to account for p o i n ts that might lie outside the disk. The sigmoid function with 

parameter � > 0 has the following attractive properties: 

f�(s) ! 0 a	s s ! �1 

f�(s) ! 1 a	s s ! +1 

f�(s) =	 f�(�s) 

f�(0) = 

1 

2 

A graph of this function is shown in Figure 2. 

Using the sigmoid function, our problem can be approximated as the following smooth 

nonlinear problem: 

HPCDP :	 minimizex;R;s 1 

;:::;sm 

R 

s.t. kx � cik � R + si 

i = 1 ; : : : ;m 

nx 2 < ;	 R 2 < ; s 1; : : : ; s m 

2 < 

m P 

f�(si) � 0:1m : 

i=1 
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Figure 2: The sigmoid function. 

In class we considered a reformulation of this problem where we squared the constraint 

\kx�cik � R+si" after adding the relaxation variables si, yielding the new constraint 

2 2\(x� ci)
T (x� ci) � R +2 Rsi 

+ si 

". Instead of this approach, create a reformulation 

where you square the constraint \ kx� cik � R" and then add the relaxation variables 

si, namely \(x� ci)
T (x� ci) � R2 + si". Modify the AMPL model from part (a) and 

solve HPCDP using the data �les cover18.dat and cover19.dat. 

Compute solution results for � = 7, 10, and 20. What do you observe? 

5 Disk and Spherical Packing Problem (20 p o i n ts) 

Consider the problem of packing a variety of wires into a cable. The m wires will have given 

radii r1 

; r ; : : : ; rm. We w ould like to determine the minimum width of a cable that will be 

used to enclose the wires. We can conceptualize this problem by considering a cross-section 

of the cable. The decision variables in the problem are the centers x1; : : : ; xm 

of the m disks 

of radii r1; : : : ; rm, and the radius R of the disk that is the cross-section of the enclosing 

cable. This problem has the following formulation: 

2 

PP : minimizex 1 

;:::;xm;R 

R 

s.t. kxi 

� xj 

k � ri 

+ rj 

i = 1 ; : : : ;m � 1; j = i+ 1 ; : : : ;m 

kxik + ri 

� R i = 1 ; : : : ;m 

nx1; : : : ; xm 

2 < ; R 2 < ; 

where in this case n = 2 is the dimension in which the problem arises. 

The �rst set of constraints ensures that no two wires overlap the same space, and the 

second set of constraints ensures that the cable encloses all of the wires. 

(a) One problem with the formulation of PP is that the constraint functions are not 

di�erentiable. Convert this formulation into an equivalent form where all functions 
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are di�erentiable. 

(b) Construct an iterative AMPL model to solve the problem. Do not use the model 

PP2.com that we designed and presented in class; instead we ask you to develop 

your own iterative AMPL model. The data �les pack18.dat and pack18a.dat contain 

radius data for m = 60 radii of wires. In each of these �les, the �rst column contains 

the index (1; 2, etc.), the second column contains the number of points of that index, 

and the third column contains the radius associated with that index. For example, 

suppose that the �le data is as shown in Table 1. This indicates that there are 50 

wires of radius 10.0, also 40 wires of radius 5.0, and also 10 wires of radius 8.7 to be 

packed. 

Index Radius 

1 50 10.0 

2 40 5.0 

3 10 8.7 

Number of Wires with given Radius 

Table 1: Example of a packing data �le. 

Describe your iterative solution method. Use your model to solve the problem for 

these two data sets, and create �gures illustrating your �nal computed solution. 
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