15.082J and 6.855J and ESD.78J

Network Simplex Animations

Calculating A Spanning Tree Flow

A tree with
supplies and demands. (Assume that all other arcs have a flow of 0)

What is the flow in arc $(4,3)$?

Calculating A Spanning Tree Flow

To calculate flows, iterate up the tree, and find an arc whose flow
3 is uniquely determined.

What is the flow in arc (5,3)?

Calculating A Spanning Tree Flow

What is the flow in arc (3,2)?

Calculating A Spanning Tree Flow

What is the flow in arc (2,6)?

Calculating A Spanning Tree Flow

What is the flow in arc $(7,1)$?

Calculating A Spanning Tree Flow

What is the flow in arc (1,6)?

Calculating A Spanning Tree Flow

Note: there are two different ways of calculating the flow on $(1,2)$, and both ways give a flow of 4. Is this a coincidence?

Calculating Simplex Multipliers for a Spanning Tree

Here is a spanning tree with arc costs.
How can one choose node potentials so that reduced costs of tree arcs is 0 ?

Recall: the reduced cost of
(i, j) is
$\mathrm{c}_{\mathrm{ij}}-\pi_{\mathrm{i}}+\pi_{\mathrm{j}}$

Calculating Simplex Multipliers for a Spanning Tree

There is a
redundant
constraint in the minimum cost flow problem.
One can set π_{1} arbitrarily. We will let $\pi_{i}=0$.

What is the simplex multiplier for node 2?

Calculating Simplex Multipliers for a Spanning Tree

The reduced cost of $(1,2)$ is
$\mathrm{C}_{12}-\mathrm{m}_{1}+\mathrm{m}_{2}=0$.

Thus 5-0 $+\mathrm{T}_{\mathbf{2}}=0$.

What is the simplex multiplier for node 7?

Calculating Simplex Multipliers for a Spanning Tree

The reduced cost of $(1,2)$ is
$c_{71}-\pi_{7}+\pi_{1}=0$.

Thus $-6-\pi_{2}+0=0$.

What is the simplex multiplier for node 3?

Calculating Simplex Multipliers for a Spanning Tree

What is the simplex multiplier for node 6 ?

Calculating Simplex Multipliers for a Spanning Tree

What is the simplex multiplier for node 4?

Calculating Simplex Multipliers for a Spanning Tree

What is the simplex multiplier for node 5?

Calculating Simplex Multipliers for a Spanning Tree

These are the simplex multipliers associated with this tree. They do not depend on arc flows, nor on costs of non-tree arcs.

Network Simplex Algorithm

The minimum Cost Flow
Problem

Spanning tree flows

$$
\begin{aligned}
& \longrightarrow \mathrm{T} \\
& \longrightarrow \mathrm{~L}
\end{aligned}
$$

An Initial Spanning Tree Solution

Simplex Multipliers and Reduced Costs

The initial simplex multipliers and reduced costs

Add a violating arc to the spanning tree, creating a cycle

Arc $(2,1)$ is added to the tree

Send Flow Around the Cycle

2 units of flow were sent along the cycle.

What is the next spanning tree?

After a pivot

The Updated Spanning Tree

In a pivot, an arc is added to T and an arc is dropped from \mathbf{T}.

Updating the Multipliers

The current multipliers and reduced costs

How can we make $\mathrm{c}^{\square}{ }_{21}=0$ and have other tree arcs have a 0 reduced cost?

Deleting $(2,1)$ from T splits T into two parts

Adding Δ to multipliers on one side of the tree does not effect the reduced costs of any tree arc except $(2,1)$. Why?

What value of
Δ should be chosen to make the reduced cost of $(2,1)=0$?

The updated multipliers and reduced costs

The updated multipliers and reduced costs

Is this tree
solution
optimal?
-4

Add a violating arc to the spanning tree, creating a cycle

Add arc $(3,4)$ to the spanning tree

What is the cycle, and how much flow can be sent?

Send Flow Around the Cycle

The next spanning tree solution

Here is the updated spanning tree solution

Updated the multipliers

Here are the current
How should we modify the multipliers? multipliers

Updated the multipliers

What value should Δ be?
Here are the current multipliers

The updated multipliers

Here are the updated multipliers.

The Optimal Solution

Here is the optimal solution.

No arc
violates the optimality conditions.

Finding the Cycle

Use Depth and Predecessor

depth $(5)=4 ;$ depth(3) $=2$;
replace node 5 by pred(5)

Use Depth and Predecessor

depth $(9)=3 ;$
depth $(3)=2 ;$
replace node
9 by $\operatorname{pred}(9)$

Use Depth and Predecessor

depth(2) $=2$;
depth(3) $=2$;
replace node
2 by pred(2);
replace node
3 by pred(3)

Use Depth and Predecessor

$\operatorname{depth}(8)=1$;
$\operatorname{depth}(7)=1$;
replace node 8 by pred(8);
replace node
7 by pred(1)

Use Depth and Predecessor

The least common ancestor of nodes 3 and 5 has
been found.

Updating the multipliers: use the thread and depth

Follow the thread starting with node 8

What is thread(8)?

Follow the thread starting with node 8

What is thread(3)?

Follow the thread starting with node 8

What is thread(10)?

Follow the thread starting with node 8

What is thread(11)?

Follow the thread starting with node 8

What is thread(6)?

The stopping rule

MIT OpenCourseWare
http://ocw.mit.edu
15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

