15.082J and 6.855J and ESD.78J

Successive Shortest Path Algorithm

The Original Costs and Node Potentials

The Original Capacities and Supplies/Demands

Select a supply node and find the shortest paths

Update the Node Potentials and the Reduced Costs

Send Flow From a Supply Node to a Demand Node Along Shortest Paths (along arcs with reduced costs of 0)

Update the Residual Network

If an arc is added to $\mathrm{G}(\mathrm{x})$, then it has a reduced cost of 0 , and it is red.

Arcs in the residual network will always have a non-negative reduced cost

A comment

At this point, one would choose a source node, and then find the shortest path from the source node to all other nodes, and then update the residual network.

However, there are still paths of 0 reduced cost in the residual network, and it makes sense to use them. This heuristic is quite useful in practice.

Send Flow From a Supply Node to a Demand Node Along Shortest Paths

Update the Residual Network

2 units of flow were sent from node 1 to node
4 on 1-3-4

Send Flow From a Supply Node to a Demand Node Along Shortest Paths

Send flow from node 1 to node 5

How much
flow
should be sent?

Update the Residual Network

Select a supply node and find the shortest paths

The shortest path tree is marked in bold and blue.

The values on the nodes are the current node potentials

Update the node potentials and the reduced costs

Send Flow From a Supply Node to a Demand Node Along Shortest Paths

Send flow from node 1 to node 5

How much flow will be sent?

Update the Residual Network

Select a supply node and find the

 shortest paths

The shortest path tree is marked in bold and blue.

Update the Node Potentials and the Reduced Costs

To obtain the new node potential, subtract the shortest path distance from the old potential.

Send Flow From a Supply Node to a Demand Node Along Shortest Paths

Send flow from node 2 to node 5

How much
flow can be sent?

Update the Residual Network

5 units of flow were sent from node 2 to node 6.

Send Flow From a Supply Node to a Demand Node

Send flow from node 1 to node 5

Update the Residual Network

The Final Optimal Flow

The Final Optimal Node Potentials and the Reduced Costs

MIT OpenCourseWare
http://ocw.mit.edu
15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

