15.082J and 6.855J and ESD.78J

Cycle Canceling Algorithm

A minimum cost flow problem

The Original Capacities and Feasible Flow

The feasible flow can be found by solving a max
 flow.

Capacities on the Residual Network

Costs on the Residual Network

Find a negative cost cycle, if there is one.

Send flow around the cycle

Send flow around the negative cost cycle

The capacity of this cycle
 is 15 .

Form the next residual network.

Capacities on the residual network

Costs on the residual network

Find a negative
 cost cycle, if there is one.

Send flow around the cycle

Send flow around the negative cost cycle
 The capacity of this cycle

Form the next residual network.

Capacities on the residual network

Costs in the residual network

Find a negative
 cost cycle, if there is one.

Send Flow Around the Cycle

Send flow around the negative cost cycle

The capacity of this cycle is 5 .

Form the next residual network.

Capacities on the residual network

Costs in the residual network

Find a negative cost cycle, if there is one.

Send Flow Around the Cycle

Send flow around the negative cost cycle

The capacity of this cycle is 5 .

Form the next residual network.

Capacities on the residual network

Costs in the residual network

Find a negative cost cycle, if there is one.

There is no negative cost cycle. But what is the proof?

Compute shortest distances in the residual network

Let $\mathrm{d}(\mathrm{j})$ be the shortest path distance from node 1 to node j.

Next let $\pi(\mathrm{j})=-\mathrm{d}(\mathrm{j})$
And compute \mathbf{c}^{π}

Reduced costs in the residual network

The reduced costs in $G\left(x^{*}\right)$ for the optimal flow \mathbf{x}^{*} are all non-negative.

MIT OpenCourseWare
http://ocw.mit.edu
15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

