15.082J and 6.855J and ESD.78J

Cycle Canceling Algorithm

A minimum cost flow problem

The Original Capacities and Feasible Flow

Costs on the Residual Network

is one.

Send flow around the cycle

Costs on the residual network

Find a negative cost cycle, if there is one.

Send flow around the cycle

Costs in the residual network

Find a negative cost cycle, if there is one.

Send Flow Around the Cycle

Costs in the residual network

Find a negative cost cycle, if there is one.

Send Flow Around the Cycle

Costs in the residual network

There is no negative cost cycle. But what is the proof?

Compute shortest distances in the residual network

Next let $\pi(j) = -d(j)$

And compute c^{π}

Reduced costs in the residual network

15.082J / 6.855J / ESD.78J Network Optimization Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.