## Network Optimization

## Flow Decomposition

## The initial flow



A deficit node (more flow leaving than entering).
An excess node (more flow entering than leaving)
A balanced node (flow in = flow out)

## Find a Path or Cycle W

Select a node with deficit if there is one.

Carry out a depth first search. Stop when a node with excess is reached or when there is a cycle.

Determine the capacity of the walk W.


The capacity of 1-2-$4-5-3-1$ is 2.

## Updates

Add the flow in W to the decomposition.

Subtract the flow in W from the current
 flow.

2 units around 1-2-4-5-3-1
cycle flows

path flows

## Find a path or cycle W

Select a node with deficit if there is one.


The capacity of $2-4-5-3-2$ is 3 .

## Updates

Add the cycle flow to the decomposition


2 units around 1-2-4-5-3-1 3 units around 2-4-5-3-2

cycle flows
path flows

## Find a path or cycle using dfs

Select a node with deficit if there is one.

Carry out a dfs.
Determine the capacity of W.

capacity of a path = $\min \{\operatorname{arc}$ capacity, excess, deficit $\}=2$

## Updates

Add the path flow to the decomposition

0 (1)
update the current flow


2 units around 1-2-4-5-3-1 3 units around 2-4-5-3-2
cycle flows


## Find a path or cycle using dfs

Select a node with deficit if there is one. Otherwise, select any node with flow leaving.


The capacity is 1

## Updates

Add the cycle flow to the decomposition
(1)
update the current flow


2 units around 1-2-4-5-3-1 3 units around 2-4-5-3-2 1 unit around 3-4-6-5-3
cycle flows

## path flows

## Find a path or cycle using dis

Select a node with deficit if there is one. Otherwise, select any node with flow leaving.

Carry out a dis.
Determine the capacity of W.


The capacity of 3-
$4-5-3$ is 3

## Updates

## Add the cycle

 flow to the decomposition

2 units around 1-2-4-5-3-1 3 units around 2-4-5-3-2 1 unit around 3-4-6-5-3 3 units around 3-4-5-3
cycle flows
path flows
12

## Find a path or cycle using dfs

Select a node with deficit if there is one. Otherwise, select any node with flow leaving.


Carry out a dfs.
Determine the capacity of W.

## Updates and the final flow decomposition

(4)


2 units around 1-2-4-5-3-1 3 units around 2-4-5-3-2 1 unit around 3-4-6-5-3 3 units around 3-4-5-3 4 units around 5-6-5
cycle flows

Add the cycle flow to the decomposition
(2)
(1)
update the current flow

$$
2 \text { units in 1-2-4-6 }
$$

MIT OpenCourseWare
http://ocw.mit.edu
15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

