Image removed due to copyright restrictions.

SPORTS SCHEDULING

An Introduction to Integer Optimization

15.071x - The Analytics Edge

The Impact of Sports Schedules

- Sports is a $\$ 300$ billion dollar industry
- Twice as big as the automobile industry
- Seven times as big as the movie industry
- TV networks are key to revenue for sports teams
- \$513 million per year for English Premier League soccer
- $\$ 766$ million per year for NBA
- \$3 billion per year for NFL
- They pay to have a good schedule of sports games

Sports Schedules

- Good schedules are important for other reasons too
- Extensive traveling causes player fatigue
- Ticket sales are better on the weekends
- Better to play division teams near the end of season
- All competitive sports require schedules
- Which pairs of teams play each other and when?

The Traditional Way

- Until recently, schedules mostly constructed by hand
- Time consuming: with 10 teams, there are over 1 trillion possible schedules (every team plays every other team)
- Many constraints: television networks, teams, cities, . . .
- For Major League Baseball, a husband and wife team constructed the schedules for 24 years (1981-2005)
- Used a giant wall of magnets to schedule 2430 games
- Very difficult to add new constraints

Some Interesting Constraints

- In 2008, the owners and TV networks were not the only ones who cared about the schedule
- President Barack Obama and Senator John McCain complained about the schedule
- National conventions conflicted with game scheduling
- Then, the Pope complained about the schedule!
- The Pope visited New York on April 20, 2008
- Mass in Yankee stadium (the traditional location)
- Each of these constraints required a new schedule

An Analytics Approach

- In 1996, "The Sports Scheduling Group" was started
- Doug Bureman, George Nemhauser, Michael Trick, and Kelly Easton
- They generate schedules using a computer
- Have been scheduling college sports since 1999
- Major League Baseball since 2005
- They use optimization
- Can easily adapt when new constraints are added

Scheduling a Tournament

- Four teams
- Atlanta (A) , Boston (B), Chicago (C) , and Detroit (D)
- Two divisions
- Atlanta and Boston
- Chicago and Detroit
- During four weeks
- Each team plays the other team in its division twice
- Each team plays teams in other divisions once
- The team with the most wins from each division will play in the championship
- Teams prefer to play divisional games later

An Optimization Approach

- Objective
- Maximize team preferences (divisional games later)
- Decisions
- Which teams should play each other each week
- Constraints
- Play other team in division twice
- Play teams in other divisions once
- Play exactly one team each week

Decision Variables

- We need to decide which teams will play each other each week

$$
\begin{aligned}
& x_{A C 2}=1 \\
& x_{A C \perp}=0
\end{aligned}
$$

- Define variables $x_{i j k}$
- If team i plays team j in week $\mathrm{k}, x_{i j k}=1$
- Otherwise, $x_{i j k}=0$

$$
\begin{aligned}
& x_{\mathrm{ACB}}=0 \\
& x_{\mathrm{AC4}}=0
\end{aligned}
$$

- This is called a binary decision variable
- Only takes values 0 or 1

Integer Optimization

- Decision variables can only take integer values
- Binary variables can be either 0 or 1
- Where to build a new warehouse
- Whether or not to invest in a stock
- Assigning nurses to shifts
- Integer variables can be $0,1,2,3,4,5, \ldots$
- The number of new machines to purchase
- The number of workers to assign for a shift
- The number of items to stock

The Formulation

- Objective
- Maximize team preferences (divisional games later)
- Decisions
- Which teams should play each other each week
- Constraints
- Play other team in division twice
- Play teams in other divisions once
- Play exactly one team each week

The Formulation

- Objective
- Maximize team preferences (divisional games later)
- Decisions
- Binary variables $x_{i j k}$
- Constraints
- Play other team in division twice
- Play teams in other divisions once
- Play exactly one team each week

The Formulation

- Objective
- Maximize team preferences (divisional games later)
- Decisions
- Binary variables $x_{i j k}$
- Constraints
- $x_{A B 1}+x_{A B 2}+x_{A B 3}+x_{A B 4}=2$

Similar constraint for teams C and D

- Play teams in other divisions once
- Play exactly one team each week

The Formulation

- Objective
- Maximize team preferences (divisional games later)
- Decisions
- Binary variables $x_{i j k}$
- Constraints
- $x_{A B 1}+x_{A B 2}+x_{A B 3}+x_{A B 4}=2$
- $x_{A C 1}+x_{A C 2}+x_{A C 3}+x_{A C 4}=1$
- Play exactly one team each week

Similar constraint for teams C and D Similar constraints for teams A and D, B and

C , and B and D

The Formulation

- Objective
- Maximize team preferences (divisional games later)
- Decisions
- Binary variables $x_{i j k}$
- Constraints
- $x_{A B 1}+x_{A B 2}+x_{A B 3}+x_{A B 4}=2$
- $x_{A C 1}+x_{A C 2}+x_{A C 3}+x_{A C 4}=1$
- $x_{A B 1}+x_{A C 1}+x_{A D 1}=1$

Similar constraint for teams C and D Similar constraints for teams A and D, B and C , and B and D

The Formulation

- Objective
- Maximize $x_{A B 1}+2 x_{A B 2}+4 x_{A B 3}+8 x_{A B 4}$
- Decisions

$$
+x_{C D 1}+2 x_{C D 2}+4 x_{C D 3}+8 x_{C D 4}
$$

- Binary variables $x_{i j k}$
- Constraints
- $x_{A B 1}+x_{A B 2}+x_{A B 3}+x_{A B 4}=2$
- $x_{A C 1}+x_{A C 2}+x_{A C 3}+x_{A C 4}=1$
- $x_{A B 1}+x_{A C 1}+x_{A D 1}=1$

Adding Logical Constraints

- Binary variables allow us to model logical constraints
- A and B can't play in weeks 3 and 4

$$
x_{A B 3}+x_{A B 4} \leq 1
$$

- If A and B play in week 4 , they must also play in week 2

$$
x_{A B 2} \geq x_{A B 4}
$$

- C and D must play in week 1 or week 2 (or both)

$$
x_{C D 1}+x_{C D 2} \geq 1
$$

Solving Integer Optimization Problems

- We were able to solve our sports scheduling problem with 4 teams (24 variables, 22 basic constraints)
- The problem size increases rapidly
- With 10 teams, 585 variables and 175 basic constraints
- For Major League Baseball
- 100,000 variables
- 200,000 constraints
- This would be impossible in LibreOffice
- So how are integer models solved in practice?

Solving Integer Optimization Problems

(1) • Reformulate the problem

- The sports scheduling problem is solved by changing the formulation
- Variables are sequences of games
- Split into three problems that can each be solved separately
(2) Heuristics
- Find good, but not necessarily optimal, decisions

Solving Integer Optimization Problems

- General purpose solvers
- CPLEX, Gurobi, GLPK, Cbc
- In the past 20 years, the speed of integer optimization solvers has increased by a factor of 250,000
- Doesn't include increasing speed of computers
- Assuming a modest machine speed-up of 1000 x , a problem that can be solved in 1 second today took 7 years to solve 20 years ago!

Solving the Sports Scheduling Problem

- When the Sports Scheduling Group started, integer optimization software was not useful
- Now, they can use powerful solvers to generate schedules
- Takes months to make the MLB schedule
- Enormous list of constraints
- Need to define priorities on constraints
- Takes several iterations to get a good schedule

The Analytics Edge

- Optimization allows for the addition of new constraints or structure changes
- Can easily generate a new schedule based on an updated requirement or request
- Now, all professional sports and most college sports schedules are constructed using optimization

MIT OpenCourseWare
https://ocw.mit.edu/
15.071 Analytics Edge

Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

