

15.071x – The Analytics Edge

Airline Regulation (1938-1978)

- The Civil Aeronautics Board (CAB) set fares, routes, and schedules for all interstate air transport
- Most major airlines favored this system due to guaranteed profits
- Led to inefficiency and higher costs
 - Applications for new routes and fares often delayed or dismissed

Airline Deregulation (1978)

- The administration of President Jimmy Carter passed the Airline Deregulation Act in 1978
- The Act encouraged
 - More competition: 52 new airlines between 1980 and 2000
 - New air routes: saved passengers an estimated \$10.3 billion each year in travel time
 - Lower fares: ticket prices are 40% lower today than they were in 1978
- This led to more passengers
 - The number of air passengers increased from 207.5 million in 1974 to 721.1 million in 2010

A Competitive Edge

- More competition led to heavy losses by air carriers
 - Need to lower fares while meeting operating costs
- 9 major carriers and more than 100 smaller airlines went bankrupt between 1978 and 2002
- How did airlines compete?

Discount Fares

- On January 17, 1985 American Airlines (AA) launched its Ultimate Super Saver fares to compete with PeopleExpress
- Need to fill at least a minimum number of seats without selling every seat at discount prices
 - Sell enough seats to cover fixed operating costs
 - Sell remaining seats at higher rates to maximize revenues/profits

How Many Seats to Sell on Discount?

- Passengers have different valuations
 - Business people value flexibility (last-minute/refundable)
 - People seeking getaways value good deals (early birds)
- Sell too many discounted seats
 - Not enough seats for high-paying passengers
- Sell too few discounted seats
 - Empty seats at takeoff implying lost revenue
- How should AA allocate its seats among customers to maximize its revenue?

Let's Start Simple

15.071x - Revenue Management: An Introduction to Linear Optimization

6

Ticket Prices

15.071x - Revenue Management: An Introduction to Linear Optimization

Boeing 757-200 Seat Map

• 166 Economy seats

15.071x - Revenue Management: An Introduction to Linear Optimization

Demand Forecasting

- Demand for different prices can be forecasted using analytics tools, looking at historical data and incorporating models of human behavior
 - Time series methods
 - Linear regression
- Forecasts could be erroneous
 - Need to assess sensitivity to forecast errors
- We'll assume that demand has been forecasted

Myopic Solution

		Price	Demand	Seats to Sell	
JFK	Regular	617	50	50	Capacity
LAX	Discount	238	150	116	166

• How many discount seats to sell to maximize revenue?

Myopic Solution

		Price	Demand	Seats to Sell	
JFK	Regular	617	100	100	Capacity
LAX	Discount	238	150	66	166

• How many discount seats to sell to maximize revenue?

Myopic Solution

		Price	Demand	Seats to Sell	
JFK	Regular	617	200	166	Capacity
LAX	Discount	238	150	0	166

- How many discount seats to sell to maximize revenue?
- This seems simple, but what if we had 100 different flights?
- In the next video, we'll see how to formulate this mathematically

Single Route Example

- Problem: Find the optimal number of discounted seats and regular seats to sell to maximize revenue
- Let's formulate the problem mathematically

Step 1. Decisions

- What are our decisions?
 - Number of regular seats to sell -R
 - Number of discount seats to sell -D

Step 2. Objective

- What is our objective?
 - Maximizing total airline revenue
 - Revenue from each type of seat is equal to the number of that type of seat sold times the seat price

Max (617*R + 238*D)

Step 3. Constraints

- AA cannot sell more seats than the aircraft capacity
 - Total number of seats sold cannot exceed capacity $R+D \leq 166$
- AA cannot sell more seats than the demand
 - Regular seats sold cannot exceed 100 $R \leq 100$
 - Discount seats sold cannot exceed 150 ≥ ≤ 150

Step 4. Non-Negativity

• AA cannot sell a negative number of seats $R \ge 0$ $D \ge 0$

Problem Formulation

Maximize Total airline revenue Subject to Seats sold cannot exceed capacity Seats sold cannot exceed demand Seats sold cannot be negative

Problem Formulation

15.071x - Revenue Management: An Introduction to Linear Optimization

Feasible Space

15.071x - Revenue Management: An Introduction to Linear Optimization

Possible Solutions

15.071x - Revenue Management: An Introduction Linear Optimization

Best Solution

Marketing Decisions

• Management is trying to figure out whether it would be beneficial to invest in marketing its fares

• AA forecasts that its marketing effort is likely to attract one more unit of demand per **\$200 spent**

	Marketing Cost/unit	Marginal Revenue
Discount Fare	\$200	
Regular Fare	\$200	

Marketing Discount Fares

Marketing Discount Fares

Marketing Discount Fares

- "Shadow Price"
 - Marginal revenue of increasing discount demand by 1 unit
 - ZERO for discount demand greater than 66

15.071x - Revenue Management: An Introduction to Linear Optimization

Marketing Regular Fares

Marketing Regular Fares

Marketing Decisions

• Management is trying to figure out whether it would be beneficial to invest in marketing its fares

• AA forecasts that its marketing effort is likely to attract one more unit of demand per **\$200 spent**

	Marketing Cost/unit	Marginal Revenue
Discount Fare	\$200	0
Regular Fare	\$200	\$379

Capacity Allocation

 Management is trying to figure out whether it would be beneficial to allocate a bigger aircraft for the 6 hour JFK-LAX leg

	Cost/hr	Total Cost	Seats	Revenue
Original Aircraft	\$12,067	\$72,402	166	\$77,408
Boeing 757-200	\$12,765	\$76,590	176	
Boeing 767-300	\$14,557	\$87,342	218	

Aircraft Capacity

15.071x - Revenue Management: An Introduction to Linear Optimization

Capacity Allocation

 Management is trying to figure out whether it would be beneficial to allocate a bigger aircraft for the 6 hour JFK-LAX leg

	Total Cost	Revenue	Profit
Original Aircraft	\$72,402	\$77,408	\$5,006
Boeing 757-200	\$76,590	\$79,788	\$3,198
Boeing 767-300	\$87,342	\$89,784	\$2,442

Connecting Flights

15.071x - Revenue Management: An Introduction to Linear Optimization

Image of plane and map are in the public domain. Source: Wikimedia Commons.

Step 1. Decisions

			Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
$\left \right $	JFK	Regular	428	80	?	1 & 2
L	LAX	Discount	190	120	?	1 & 2
{	JFK	Regular	642	75	?	1
L	- DFW	Discount	224	100	?	1
{	DFW	Regular	512	60	?	2
L	- LAX	Discount	190	110	?	2

- Number of regular seats to sell
 *R*_{JFK-LAX}, *R*_{JFK-DFW}, *R*_{DFW-LAX}
 - Number of discount seats to sell $D_{\text{JFK-LAX}}, D_{\text{JFK-DFW}}, D_{\text{DFW-LAX}}$

Step 2. Objective

		Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
JFK	Regular	428	80	?	1 & 2
LAX	Discount	190	120	?	1 & 2
JFK	Regular	642	75	?	1
- DFW	Discount	224	100	?	1
DFW	Regular	512	60	?	2
- LAX	Discount	190	110	?	2

• Maximize total revenue

 $428R_{
m JFK-LAX} + 190D_{
m JFK-LAX} + 642R_{
m JFK-DFW} + 224D_{
m JFK-DFW} + 512R_{
m DFW-LAX} + 190D_{
m DFW-LAX}$

Step 3. Constraints

		Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
JFK	Regular	428	80	?	1 & 2
LAX	Discount	190	120	?	1 & 2
JFK	Regular	642	75	?	1
- DFW	Discount	224	100	?	1
DFW	Regular	512	60	?	2
- LAX	Discount	190	110	?	2

- AA cannot sell more seats that the aircraft capacity

 - First leg JFK-DFW $R_{
 m JFK-LAX} + D_{
 m JFK-LAX} + R_{
 m JFK-DFW} + D_{
 m JFK-DFW} \leq 166$
 - Second leg DFW-LAX

$R_{\rm JFK-LAX} + D_{\rm JFK-LAX} + R_{\rm DFW-LAX} + D_{\rm DFW-LAX} \le 166$

Step 3. Constraints

		Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
JFK	Regular	428	80	?	1 & 2
LAX	Discount	190	120	?	1 & 2
JFK	Regular	642	75	?	1
- DFW	Discount	224	100	?	1
DFW	Regular	512	60	?	2
- LAX	Discount	190	110	?	2

• AA cannot sell more seats than the demand

$$\begin{array}{ll} R_{\rm JFK-LAX} \leq 80 & D_{\rm JFK-LAX} \leq 120 \\ R_{\rm JFK-DFW} \leq 75 & D_{\rm JFK-DFW} \leq 100 \\ R_{\rm DFW-LAX} \leq 60 & D_{\rm DFW-LAX} \leq 110 \end{array}$$

Step 4. Non-Negativity

		Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
JFK	Regular	428	80	?	1 & 2
LAX	Discount	190	120	?	1 & 2
JFK	Regular	642	75	?	1
- DFW	Discount	224	100	?	1
DFW	Regular	512	60	?	2
- LAX	Discount	190	110	?	2

• AA cannot sell a negative number of seats

 $\begin{cases} R_{\rm JFK-LAX} \ge 0 & D_{\rm JFK-LAX} \ge 0 \\ R_{\rm JFK-DFW} \ge 0 & D_{\rm JFK-DFW} \ge 0 \\ R_{\rm DFW-LAX} \ge 0 & D_{\rm DFW-LAX} \ge 0 \end{cases}$

15.071x - Revenue Management: An Introduction to Linear Optimization

Complex Network

15.071x - Revenue Management: An Introduction to Linear Optimization43

Route map screenshot © America Airlines. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Multiple Fare Classes

Fare	Domestic Upg.	International Upg.	EQP	EQM	Mileage	Fare	Domestic Upg.	International Upg.	EQP	EQM	Mileage
Α	First Class	First Class	1.5	1.0	150%	Ν	Yes	No	.5	1.0	100%
в	Yes	Yes	1.5	1.0	100%	0	Yes*	No	.5	1.0	100%
С	NA	Business Upgrade	N/A	N/A	N/A	Р	First Class Fare	First Class Fare	1.5	1.0	150%
D	NA	Business Fare	1.5	1.0	125%	Q	Yes	No	.5	1.0	100%
Е	No	No	N/A	N/A	N/A	R	NA	Business Class Upgrade or waitlist	N/A	N/A	N/A
F	First Class Fare	First Class	1.5	1.0	150%	S	Yes*	No	.5	1.0	100%
G	Government	Government	.5	1.0	100%	т	Coach Award	No	N/A	N/A	N/A
						U	NA	Business Class Award	N/A	N/A	N/A
н	Yes*	Waitlist only	1.0	1.0	100%	V	Yes*	No	1.0	1.0	100%
T	NA	Business Class	1.5	1.0	125%	W	Yes*	No	1.0	1.0	100%
J	NA	Business Class Fare	1.5	1.0	125%	x	First Class Upgrade	Business Class Upgrade	N/A	N/A	N/A
Κ	Yes	No	1.0	1.0	100%	Υ	Yes	Yes	1.5	1.0	100%
L	Yes	No	1.0	1.0	100%	Z	First Class Award	NA	N/A	N/A	N/A
Μ	Yes	No	1.0	1.0	100%	EQP:	Elite-Qualify	ing Points / E	QM: Elit	e-Qualif	ying Mile

15.071x - Revenue Management: An Introduction to Linear Optimization

44

Fare class info screenshot © America Airlines. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

The Competitive Strategy of AA

• PEOPLExpress could not compete with AA's Ultimate Super Savers fares

"We were a vibrant, profitable company from 1981 to 1985, and then we tipped right over into **losing 50** million a month."

"We had been profitable from the day we started until American came at us with Ultimate Super Savers."

Donald Burr, CEO of PEOPLExpress (1985)

The Competitive Strategy of AA

• Selling the right seats to the right customers at the right prices

"Revenue management is the single most important technical development in transportation management since we entered the era of airline deregulation."

"We estimate that revenue management has generated **\$1.4 billion in incremental revenue** in the last three years."

Robert Crandall, former CEO of AA (~1985)

The Edge of Revenue Management

- Sabre Holdings
 - Built revenue management system for AA
 - As of November 2012, ranked 133 among America's largest private companies with \$3.15 billion in sales
 - 400 airlines, 90,000 hotels, 30 car-rental companies
- Today, companies prosper from revenue management
 - Delta airlines increased annual revenue by \$300 million
 - Marriott hotels increased annual revenue by \$100 million

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

15.071 Analytics Edge Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.