Formulas That May Be Needed

1 Laws of Probability

- If A and B are mutually exclusive events, then $P(A$ or $B)=P(A)+P(B)$.
- If A and B are independent events, then
- $P(A$ and $B)=P(A) \times P(B)$,
$-P(A \mid B)=P(A)$.
- If $P(A$ and $B)=P(A) \times P(B)$ or $P(A \mid B)=P(A)$ or $P(B \mid A)=P(B)$, then
- A and B are independent events.
- If A and B are two events and $P(B) \neq 0$, the conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{P(B \mid A) \times P(A)}{P(B)} .
$$

2 Discrete Random Variables (RV from now on)

$$
\begin{gathered}
\bar{X}=E(X)=\mu_{X}=\sum_{i=1}^{n} P\left(X=x_{i}\right) x_{i} \quad \operatorname{VAR}(X)=\sigma_{X}^{2}=\sum_{i=1}^{n} P\left(X=x_{i}\right)\left(x_{i}-\mu_{X}\right)^{2} \\
\operatorname{Std} \operatorname{Dev}(X)=\sigma_{X}=\sqrt{\operatorname{VAR}(X)}
\end{gathered}
$$

3 Binomial Distribution with Parameters n and p

$\mu_{X}=n p \quad \sigma_{X}^{2}=n p(1-p) \quad P(X=x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}, \quad x=0,1, \ldots, n$

4 Two Random Variables

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\sum_{i=1}^{n} P\left(X=x_{i} \text { and } Y=y_{i}\right)\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) \\
\operatorname{Corr}(X, Y) & =\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
\end{aligned}
$$

If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$ and $\operatorname{Corr}(X, Y)=0$.

$$
\begin{aligned}
E(a X+b Y+c) & =a E(X)+b E(Y)+c \\
\operatorname{VAR}(a X+b Y+c) & =a^{2} \operatorname{VAR}(X)+b^{2} \operatorname{VAR}(Y)+2 a b \operatorname{Cov}(X, Y) \\
& =a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \sigma_{X} \sigma_{Y} \operatorname{Corr}(X, Y)
\end{aligned}
$$

5 Uniform Distribution between a and b

$$
E(X)=\frac{a+b}{2} \quad \operatorname{VAR}(X)=\frac{(b-a)^{2}}{12} \quad P(X \leq x)=\frac{x-a}{b-a} \quad \text { if } a \leq x \leq b
$$

6 Normal Distribution

- If X is a normal distribution with mean μ and standard deviation σ, then $P(X \leq x)=$ $F\left(\frac{x-\mu}{\sigma}\right)$, where $F(z)$ can be read from the "normal" table and $z=\frac{x-\mu}{\sigma}$.
- If X and Y are Normally distributed, then so is $a X+b Y+c$.
- Assume that $X_{1}, . ., X_{n}$ are independent and identically distributed, $E\left(X_{i}\right)=\mu$, and $\operatorname{VAR}\left(X_{i}\right)=$ σ^{2}. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ be the sum and $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the average, then:
- Central Limit Theorem for the sum. If n is moderately large (say, 30 or more) then S_{n} is approximately Normally distributed with mean $n \mu$ and standard deviation $\sigma \sqrt{n}$.
- Central Limit Theorem for the sample mean. If n is moderately large, then \bar{X} is approximately Normally distributed with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.
- A binomial distribution can be approximated with a normal (with the correct parameters μ and σ) when $n p \geq 5$ and $n(1-p) \geq 5$.

7 Statistical Inference for the Population Mean μ

- $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the sample mean. The observed sample mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is an estimate of the mean of the population μ.
- $S=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the standard deviation of the sample. The observed standard deviation of the sample $s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ is an estimate of the standard deviation of the population σ.
- The standard deviation of the sample mean is $\operatorname{Std} \operatorname{Dev}(\bar{X})=\frac{\sigma}{\sqrt{n}}$, where σ is the standard deviation of the population.
- If n is large (say, 30 or more), then $\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}$ is approximately a standard Normal RV.
- If n is small (say, less than 30) and the population distribution is "well-behaved", then $\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}$ obeys a t-distribution with $n-1$ degrees of freedom (dof).
- For $n \geq 30$ an $\alpha \%$ confidence interval for the real mean μ is $\left[\bar{x}-c \times \frac{s}{\sqrt{n}}, \bar{x}+c \times \frac{s}{\sqrt{n}}\right]$, where c can be found by solving $P(-c \leq Z \leq c)=\alpha / 100$ with Z being a standard Normal RV. For example:

For $\alpha=.90, c=1.645 ;$ for $\alpha=.95, c=1.960 ;$ for $\alpha=.98, c=2.326 ;$ for $\alpha=.99, c=2.576$.

- For $n<30$ and a "well-behaved" population distribution, an $\alpha \%$ confidence interval for the real mean μ is $\left[\bar{x}-c \times \frac{s}{\sqrt{n}}, \bar{x}+c \times \frac{s}{\sqrt{n}}\right]$, where c satisfies that $P(-c \leq T \leq c)=\alpha / 100$ with T a RV that has a t-distribution with $n-1$ dof.
- To construct an $\alpha \%$ confidence interval that is within (plus or minus) L of the actual mean, the required sample size is $n=\frac{c^{2} s^{2}}{L^{2}}$, where c satisfies that $P(-c \leq Z \leq c)=\alpha / 100$ if Z is a standard Normal RV.

8 Regression

- $n=$ number of data points
- $k=$ number of explanatory (independent) variables
- Based on observed data

$$
\begin{gathered}
\left(y_{1}, x_{11}, \ldots, x_{k 1}\right) \\
\vdots \\
\left(y_{n}, x_{1 n}, \ldots, x_{k n}\right)
\end{gathered}
$$

- Population relation: $Y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{k} x_{k i}+\epsilon_{i}$ where ϵ_{i} is $N(0, \sigma)$
- $\hat{y}_{i}=b_{0}+b_{1} x_{1 i}+\ldots+b_{k} x_{k i}$ is the predicted value
- b_{j} is the regression coefficient and an estimate of $\beta_{j}, j=0,1, \ldots, k$
- $s_{b_{j}}$ is the standard deviation of b_{j}
- $e_{i}=y_{i}-\hat{y}_{i}$ is the residual
- An $\alpha \%$ confidence interval for β_{j} is $\left[b_{j}-c \times s_{b_{j}}, b_{j}+c \times s_{b_{j}}\right]$ where c satisfies that $P(-c \leq T \leq c)=\alpha / 100$ if T obeys a t-distribution with dof $=n-k-1$
- The t-statistic is $t_{b_{j}}=\frac{b_{j}}{s_{b_{j}}}$
- Checklist for evaluating a linear regression model: (i) linearity, (ii) signs of regression coefficients, (iii) significance of independent variables, (iv) R^{2}, (v) normality of the residuals, (vi) heteroscedasticity, (vii) autocorrelation, and (viii) multicolinearity.

