Formulas That May Be Needed

1 Laws of Probability

- If A and B are mutually exclusive events, then P(A or B) = P(A) + P(B).
- If A and B are independent events, then
 - $P(A \text{ and } B) = P(A) \times P(B),$
 - $P(A \mid B) = P(A).$
- If $P(A \text{ and } B) = P(A) \times P(B)$ or $P(A \mid B) = P(A)$ or $P(B \mid A) = P(B)$, then
 - $\ A$ and B are independent events.
- If A and B are two events and $P(B) \neq 0$, the conditional probability of A given B is

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(B \mid A) \times P(A)}{P(B)} .$$

2 Discrete Random Variables (RV from now on)

$$\bar{X} = E(X) = \mu_X = \sum_{i=1}^n P(X = x_i) x_i \qquad \text{VAR}(X) = \sigma_X^2 = \sum_{i=1}^n P(X = x_i)(x_i - \mu_X)^2$$

Std Dev(X) = $\sigma_X = \sqrt{\text{VAR}(X)}$

3 Binomial Distribution with Parameters n and p

$$\mu_X = np$$
 $\sigma_X^2 = np(1-p)$ $P(X=x) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}, \quad x = 0, 1, \dots, n$

4 Two Random Variables

$$\operatorname{Cov}(X,Y) = \sum_{i=1}^{n} P(X = x_i \text{ and } Y = y_i)(x_i - \mu_X)(y_i - \mu_Y)$$
$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

If X and Y are independent, then Cov(X, Y) = 0 and Corr(X, Y) = 0.

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

VAR $(aX + bY + c) = a^2$ VAR $(X) + b^2$ VAR $(Y) + 2ab$ Cov (X, Y)
 $= a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \sigma_X \sigma_Y$ Corr (X, Y)

5 Uniform Distribution between a and b

$$E(X) = \frac{a+b}{2}$$
 $VAR(X) = \frac{(b-a)^2}{12}$ $P(X \le x) = \frac{x-a}{b-a}$ if $a \le x \le b$

6 Normal Distribution

- If X is a normal distribution with mean μ and standard deviation σ , then $P(X \le x) = F(\frac{x-\mu}{\sigma})$, where F(z) can be read from the "normal" table and $z = \frac{x-\mu}{\sigma}$.
- If X and Y are Normally distributed, then so is aX + bY + c.
- Assume that $X_1, ..., X_n$ are independent and identically distributed, $E(X_i) = \mu$, and $VAR(X_i) = \sigma^2$. Let $S_n = \sum_{i=1}^n X_i$ be the sum and $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be the average, then:
 - Central Limit Theorem for the sum. If n is moderately large (say, 30 or more) then S_n is approximately Normally distributed with mean $n\mu$ and standard deviation $\sigma\sqrt{n}$.
 - Central Limit Theorem for the sample mean. If n is moderately large, then \bar{X} is approximately Normally distributed with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.
- A binomial distribution can be approximated with a normal (with the correct parameters μ and σ) when $np \ge 5$ and $n(1-p) \ge 5$.

7 Statistical Inference for the Population Mean μ

- $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the sample mean. The *observed* sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is an estimate of the mean of the population μ .
- $S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i \bar{X})^2}$ is the standard deviation of the sample. The *observed* standard deviation of the sample $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i \bar{x})^2}$ is an estimate of the standard deviation of the population σ .
- The standard deviation of the sample mean is Std $\text{Dev}(\bar{X}) = \frac{\sigma}{\sqrt{n}}$, where σ is the standard deviation of the population.
- If n is large (say, 30 or more), then $\frac{\bar{X} \mu}{\frac{S}{\sqrt{n}}}$ is approximately a standard Normal RV.
- If n is small (say, less than 30) and the population distribution is "well-behaved", then $\frac{X \mu}{\frac{S}{\sqrt{n}}}$ obeys a t-distribution with n 1 degrees of freedom (dof).
- For $n \ge 30$ an $\alpha\%$ confidence interval for the real mean μ is $\left[\bar{x} c \times \frac{s}{\sqrt{n}}, \bar{x} + c \times \frac{s}{\sqrt{n}}\right]$, where c can be found by solving $P(-c \le Z \le c) = \alpha/100$ with Z being a standard Normal RV. For example:

For
$$\alpha = .90, c = 1.645$$
; for $\alpha = .95, c = 1.960$; for $\alpha = .98, c = 2.326$; for $\alpha = .99, c = 2.576$.

- For n < 30 and a "well-behaved" population distribution, an $\alpha\%$ confidence interval for the real mean μ is $\left[\bar{x} c \times \frac{s}{\sqrt{n}}, \bar{x} + c \times \frac{s}{\sqrt{n}}\right]$, where c satisfies that $P(-c \le T \le c) = \alpha/100$ with T a RV that has a t-distribution with n 1 dof.
- To construct an $\alpha\%$ confidence interval that is within (plus or minus) L of the actual mean, the required sample size is $n = \frac{c^2 s^2}{L^2}$, where c satisfies that $P(-c \le Z \le c) = \alpha/100$ if Z is a standard Normal RV.

8 Regression

- n = number of data points
- k = number of explanatory (independent) variables
- Based on observed data $(y_1, x_{11}, \ldots, x_{k1})$

```
(y_n, x_{1n}, \ldots, x_{kn})
```

- Population relation: $Y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \epsilon_i$ where ϵ_i is $N(0, \sigma)$
- $\hat{y}_i = b_0 + b_1 x_{1i} + \ldots + b_k x_{ki}$ is the predicted value
- b_j is the regression coefficient and an estimate of β_j , j = 0, 1, ..., k
- s_{b_j} is the standard deviation of b_j
- $e_i = y_i \hat{y}_i$ is the residual
- An α % confidence interval for β_j is $[b_j c \times s_{b_j}, b_j + c \times s_{b_j}]$ where c satisfies that $P(-c \leq T \leq c) = \alpha/100$ if T obeys a t-distribution with dof = n - k - 1
- The *t*-statistic is $t_{b_j} = \frac{b_j}{s_{b_j}}$
- Checklist for evaluating a linear regression model: (i) linearity, (ii) signs of regression coefficients, (iii) significance of independent variables, (iv) R^2 , (v) normality of the residuals, (vi) heteroscedasticity, (vii) autocorrelation, and (viii) multicolinearity.