Human Factors and Life Support in Apollo

Engineering Apollo 16.395/ESD.30/STS.471 Prof. Laurence R. Young

1958 NACA Space Technology

Study Chaired by Guy Stever of MIT **Human Factors and Training Group** chaired by Randy Lovelace, MD 15 Technical Areas Wiesner and Abelson wanted NASA out of the science Need for a basic biomedical research program

1958 HF and Life Science Issues

- 1. Program administration
- 2. Acceleration
- 3. Hi-intensity space radiation
- 4. Cosmic radiation
- 5. Nuclear propulsion
- 6. Ionization effects
- 7. Human info processing/comm.

1958 HF and Life Science Issues (cont)

- 8. Displays
- 9. Closed-cycle living
- 10. Balloon simulators
- 12. Space capsules
- 13. Crew selection and training
- 14. Research Centers
- 15. Launch sites

Major Life Science Issues

Astronaut Selection

Medical Requirements

Skill Set

Life Support Systems
Accelerations
Atmosphere

Early Biomedical Concerns

Heart Failure

Pneumonia

Muscle cramps

Balance

Sleep

Bone loss

Eating/drinking

Disorientation

Manual control

Vision

Hearing

Separation

Acceleration Tolerance

Transverse (Eyeballs In)

Fitted couches

Decreased tolerance

Animals in Space First?

Science Community wanted Animals
Chimps trained for flight
Enos had ectopic heart beats
Ham successful in Mercury suborbital
flight

X-15 program seemed to qualify man for flights

Biosatellite 3 flights with chimps 1963-67

Office for Biotechnology & Human Research

Man-machine integration
Advanced life support
(AG and closed systems)
In-flight animal studies
Bioinstrumentation

In-Flight Medical Monitoring

No knowledge of o-g tolerance

A source of friction with crews

Originally only:

Body temp. (rectal, then oral)

Respiration rates (thermistor then impedance pneumograph)

Blood pressure, later, ECG

Reliance on voice and interrogation

Pilots vs. Flight Docs

Pilots feel invincible

Flight surgeons are conservative and are considered a threat

Scientific community wants more studies See Charles Berry quote, p. 149 of Engle and Lott

Astronaut Duties

Backup of the automatics systems
Scientific observer
Engineering observer
Test pilot

Crew Training

Space familiarization

High performance aircraft

Exposure to stresses

Simulation

Flight Crew Training

Selection
Physical health
Mental health
Test Pilot Experience
Training

Coordination of Manned Program

NACA WG on Human Factors
Chaired by Guy Stever (MIT)
Report by Randy Lovelace
Air Force Lead (X-15 and beyond)
Dyna-Soar

Mercury Biomedicine

Life Science Advisory Committee, 1959

Randy Lovelace, Chair

Stan White, MD

Bob Voas, PhD

Only involved in selection

14 day Gemini key to Apollo Biomedicine

Acceleration

(Henry-Gauer)

Pneumatic cuffs

Bungee exerciser

Weightlessness

Radiation

Capsule environment

Waste management

Isolation

Sleep

Man-machine

Food and water

RBC loss found

Life Science in Apollo

Microgravity Effects
Radiation Protection
Planetary Protection
Other science

Oxygen vs Air

Oxygen Advantages
Lower pressure
Lighter structure
Avoids hypoxia
Avoids bends
Simpler engineering

Oxygen disadvantages
Long term hyperoxia
Fire hazard
Science impact
Toxic oxidation
products

Carbon Dioxide

Potentially lethal if not regulated
Simple LiOH Cannisters
Need for monitoring
Later – molecular sieve and other
chemical reactions

US and Soviet Spacecraft

Figures removed due to copyright restrictions.

Graph of atmosphere compositions of various U.S. and Soviet spacecraft, and image of the Apollo-Soyuz joint mission.

Pre-Selection Testing

Only active duty military test pilots tested IQ and engineering and math aptitude Medical evaluation Centrifuge Hypo-baric chamber Thermal chamber Parabolic flight

ORIGINAL SEVEN

Selected for:

Intelligence

Physical Stamina

Health

Science/Engineering

Light Weight

Not too tall (71 in.)

Below 35 (later 39) yrs

Pilot Performance

Disorientation

Isolation

Illness

Recency

Space Suits

Designs based on high altitude pressure suits
Backup to cabin pressurization
EVA mobility
Pure oxygen PLSS, 3.7 psi
Evaporative cooling, later liquid cooling
Excessive heat production