
2 Structure

2.1 Coulomb interactions

While the information needed for reproduction of living systems is chiefly maintained in the
sequence of macromolecules, any practical use of this information must rely on the physical
forces that shape the molecules into functioning, sequence-dependent, structures. These
forces and the resulting structures are the topic of the second segment of this course.

Since neither gravity, nor nuclear interactions, are particularly relevant to most organ-
isms, the forces that shape the molecules of life are various manifestations of the electro-
magnetic interactions between electrons and nuclei. These include the strong covalent bonds
(maintaining the primary connectivity of a molecule), the weaker hydrogen bonds (sensitive
to orientations of the participating moieties), and the even weaker (and roughly direction in-
dependent) van der Waals forces. However, for these molecules to properly fold and function
in the cell environment, their functionally relevant energy scales should be of the order of
the thermal energy kBT at room temperature. Higher energies would freeze the correspond-
ing degrees of freedom, while lower energies would be irrelevant and ignored in comparison
to the ubiquitous thermal fluctuations. Thus entropic considerations play a major role in
biomolecules, as will be emphasized in the much simpler systems considered in the following
sections.

2.1.1 Charge dissociation in solution

Entropy is indeed the reason why many molecules (electrolytes) dissociate and ionize in
solution. The opposing charges making up an ion clearly minimize the Coulomb energy by
being in close proximity in a bound (molecular) state. The loss of this electrostatic energy
in the dissociated (ionized) state is balanced by the gain in configurational entropy. We can
quantify this by an approximate evaluation of the change in free energy upon dissociation,
as

∆F = ∆E − T∆S = −Eb + kBT log

(

V

Nv0

)

. (2.1)

Here, Eb is the binding energy, T is the temperature, kB is the Boltzmann constant, and v0 is
some characteristic volume. The gain in entropy is estimated from the number of positions
available for each of N particles in the volume V . In a more systematic evaluation of the
partition function, v0 = λ3, where λ is the “thermal wavelength”. Setting the free energy
change to zero, gives the equilibrium concentration

c =
N

V
=

1

λ3
e−βEb . (2.2)

The electrostaic contribution to the binding energy, Ec, can be computed from Coulomb’s
law, as

Ec =
q1q2

ǫr
=

e2z2

ǫr
, (2.3)

27



where ǫ denotes the dielectric constant of water, z is the valence, and e is the electron charge.
The physically significant quantity is the ratio of this energy to the thermal energy kBT ,
which can be expressed as

βEc =
βe2z2

ǫr
= z2 lB

r
, (2.4)

where we have defined the Bjerrum length

lB =
e2

ǫkBT
. (2.5)

For water, ǫ ≈ 81, and the Bjerrum length is about 7.1 Å. Very roughly, we can say that
at separations larger than lB, the Coulomb interaction between unit charges in water is
insignificant compared to thermal energy.

We can also think of dissociation as the chemical reaction

CA ⇋ C+ + A−. (2.6)

(The dissociated positive charge is called a cation, the negative one an anion.) The equilib-

rium constant of the reaction

Keq. ≡
[C+][A−]

[CA]
∝ e−βEb , (2.7)

is a measure of the ease with which ionization occurs. For strong electrolytes, such as
Na+Cl− (salt), Na+OH (base) and H+Cl (acid), which dissociate almost totally, the net
binding energy is small. Weaker electrolytes are more strongly bound and dissociate less
readily. Water itself can dissociate into H+ and OH− ions, but at room temperature this
process only produces about 10−7 hydrogen ions per mole.
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Biological molecules also dissociate, and the ‘charge environment’ of a cell is quite compli-
cated. The lipids forming the cell membrane become negatively charged upon dissociation,
as does DNA. The latter is an acid that releases H+ ions, leaving behind a negatively charged
backbone. Proteins can also release H+ ions, but some of the amino-acid side groups are
actually basic, releasing OH−. A molecule of this sort, which can develop regions both of pos-
itive and of negative charge upon dissociation, is called a polyampholyte. Molecules like the
DNA backbone, which carry a uniform charge, are known as polyelectrolytes. Together, both
sorts of macromolecules are referred to as macroions, and the small charged particles they
give up into the cytoplasm are called counterions. The electrostatic interactions between
the macromolecules are very important for their biological function– the repulsive forces
prevent aggregation, while attractions are important for docking and recognition. However,
calculating these interactions in the environment of the moving counterions is not an easy
task.

2.1.2 The Poisson–Boltzmann Equation

We know that proteins bind to one another, and that some proteins bind to DNA. In prin-
ciple, an effective interaction between such macroions can be obtained by holding them at
fixed separation (and orientation). A constrained partition function is then evaluated by
integrating over all the other degrees of freedom, e.g. the positions of the more mobile
counterions, as

e−βF (macroions) = Zres. =

∫

∏

i

d3ri e
−βHc . (2.8)

In addition to steric constraints (the excluded volume around each atom), the Hamiltonian
Hc includes the direct Coulomb interactions between the macroions, their interactions with
the counterions, as well as the interactions amongst counterions. The restricted partition
function is too hard to compute directly, and we shall instead resort to a “mean-field”
approximation in which each counterion is assumed to experience an effective potential φ(~r)
due to the macroion, as well as all the other counterions. The effective potential is then
computed self-consistently.

In this approximation, the position-dependent density of counterion species α adjusts to
the potential through the Boltzmann weight, as

nα(~r) = n̄α exp [−βφ(~r)zαe] . (2.9)

Note that n̄α is in general not the particle density, but an overall parameter that needs to be
adjusted so that the integral over ~r leads to the correct number of counterions. The potential
φ(~r) is in turn determined by the charge distribution, and satisfies the Poisson equation.

∇2φ = −4π

ǫ
ρ(~r). (2.10)

The charge density at each point has a contribution from the macroions, and from the

29



(fluctuation averaged) counterion density, and thus

ρ(~r) = ρmacroions(~r) +
∑

α

zαen̄αe−βφzαe. (2.11)

Self-consistency then leads to the Poisson-Boltzmann Equation

∇2φ = −4π

ǫ

[

ρmacroions(~r) +
∑

α

zαen̄αe−βφzαe

]

, (2.12)

This equation, while a drastic simplification of the original problem, is commonly used. It
is a non-linear partial differential equation, and exact solutions are available only for a few
simple geometries. It does have the virtue of being at least numerically solvable.

2.1.3 Debye screening by salt ions

We expect physically that counterions will accumulate near regions of opposite charge to
lower the electrostatic energy. As a result a charged macroion will be surrounded by a
cloud of counterions, shielding and reducing its net charge. This effect is easily captured
in a linearized version of Eq. (2.12). Linearizing the Boltzmann weight is actually a quite
good approximation when the Coulomb interaction between macroions is screened by a high
concentration of salt ions. The first step is to expand the exponential such that the local
counterion charge density is

∑

α

zαn̄αe−βzαeφ ≈
∑

α

zαn̄α [1 − βzαeφ + · · · ] . (2.13)

We note that at this order the local variations in counterion charge density and potential
are simply proportional. Since the salt ions are overall neutral, we can then identify n̄α with
the overall particle density of species α at this order. The condition of charge neutrality,
∑

α zαn̄α = 0, then leads to

∇2φ = −4π

ǫ
ρmacro(~r) +

φ

λ2
, (2.14)

where

λ−2 =
∑

α

4π

ǫ
βe2z2

αn̄α = 4πlB
∑

α

z2
αn̄α. (2.15)

This is the Debye-Hückel equation, and the parameter λ is the Debye screening length. In a
typical biological environment λ is around 1nm.

For the case of a point charge Q = ze, i.e. for

ρmacro(~r) = zeδ3(r), (2.16)
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the solution is the exponentially damped version of the Coulomb potential

φ(~r) = kBT
zlB
|~r| e−

|~r|
λ . (2.17)

Since Eq. (2.14) is linear, its solution for a general distribution of charges is obtained by
simple superposition, leading to the interaction energy

βEinteractions(macroions) = lB
∑

m<n

zmzn

|~rmn|
e−

|~rmn|
λ . (2.18)

2.1.4 Dissociation from a plate

Let us now consider the full Poisson–Boltzmann equation for the simple geometry of a flat
plate, e.g. describing a membrane. Upon dissociation the membrane is negatively charged;
its charge density denoted by σ = −e/d2 (i.e. ignoring discreteness effects, the negative
charges are on average a distance d apart). The neutralizing counterions, of charge +e are
present in the solution on both sides of the membrane. Due to translational symmetry,
the average charge density (and potential) only depend on the separation from the plate,
indicated by the coordinate y, and Eq. (2.12) now reads

d2φ

dy2
= −4π

ǫ
en̄e−βeφ(y). (2.19)

The following trick allows us to guess the solution to Eq. (2.19). We first make a trans-
formation to

W (y) = eβeφ/2 =⇒ φ =
2

βe
log W, (2.20)

such that

φ′ =
2

βe

W ′

W
, and φ′′ =

2

βe
· W ′′W − W ′2

W 2
.

Multiplying both sides by W 2, Eq. (2.19) can be recast as

2

βe

(

W ′′W − W ′2
)

= −4π

ǫ
en̄ . (2.21)
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While still non-linear, it is easy to see that a linear function of y satisfies the above equation,
and we set

W (y) = 1 +
y

y0

, (2.22)

where we have arbitrarily set φ(y → 0) = 0, such that W (0) = 1, and y−2
0 = 2πβe2n̄/ǫ.

Note, however that n̄ is simply a parameter that needs to be set by the requirement of
charge neutrality. It is easier to trade in this parameter for y0 and constrain the latter. The
electrostatic potential thus has the form

φ(y) =
2

βe
log

[

1 +
y

y0

]

. (2.23)

The undetermined length y0, clearly sets the scale at which the counterion density changes
significantly. It can be determined by examining the limit y ≪ y0, for which Eq. (2.23)
becomes

φ(y) ≈ 2

βe

y

y0
. (2.24)

Indeed, at distances close enough to the surface that screening is unimportant, we expect
the electric field to be (e.g. by appealing to a Gaussian pillbox)

E =
2πσ

ǫ
,

and a corresponding potential

φ = −2πσ

ǫ
y . (2.25)

Comparing this result with Eq. (2.24) indicates that

y0 =
ǫ

eσπβ
=

ǫ

βe2

d2

π
=

d2

πlB
. (2.26)

This characteristic scale is known as the Guoy-Chapman length, characterizing the thickness
of the “diffusive boundary layer” of ions that shields a charged membrane.

Retracing the steps of algebra, it is easy to check that

n̄ =
π

2

lB
d4

,

and

n(y) =
n̄

W 2
=

π

2

lB
d4

(

1 +
y

y0

)−2

. (2.27)

At large separations, y ≫ y0 from the plate, the counterion density falls off as (2πlBy2)
−1

.
The corresponding potential behaves as φ(y) ≈ 2 ln(y)/(βe), very different from the linear
potential in vacuum, and also quite distinct from an exponential decay that may have been
surmised based on Debye-Huckel screening. Clearly this type of screening will lead to a quite
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different interaction between charged plates, a question that will be taken up in the next
problem set. In connection to that, we note that Eq. (2.21) also admits solutions of the form
cos(y/y1 + θ) with parameters y1 and θ that can be adjusted to conform to the boundary
conditions corresponding to parallel charged plates.

While the solutions to the Poisson-Boltzmann equation are interesting and informative,
they do not capture the entire physics of the problem. Fluctuations in charge density can
be important in lowering the free energy. Indeed at high temperatures the correlated fluc-
tuations around two similarly charged macroions further reduce the repulsion through a
dipole-dipole interaction reminiscent of the van der Waals force. If strong enough these
fluctuations can entirely reverse the sign of the force, leading to an attractive interaction
between like-charged macroions. Such phenomena, not captured by the Poisson-Boltzmann
equation, have received considerable attention in recent years.
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