
4.5 Synchronization

We have established how simple chemical reactions can create an oscillator. The phase of such
simple oscillators is set by initial conditions. In certain situations, e.g. for the pacemaker
cells in the heart, the oscillators must act in concert. One way to synchronize a number
of oscillators is to couple them to an external source, as in the light of the sun in case of
circadian rhythms. In other cases, a collection of self–coupled oscillators may spontaneously
synchronize as a collective. The following Kuramoto model provides an explanation of how
such synchronization may happen.

Consider a set of oscillators, each parametrized by a phase angle θi, for i = 1, 2, · · · , N .
We shall assume that each oscillator advances at a uniform angular velocity ωi, taken inde-
pendently from a probability distribution function p(ω), such that

θ̇i = ωi.

In a biological context the rate ω for a collection of cells (or organisms) may well depend
on the concentration of chemicals within it. While these concentrations vary between indi-
viduals, it is likely that for a specific system the range of this variation is small, and the
distribution is narrowly peaked around some central frequency Ω. Without loss of mathe-
matical rigor we can set Ω = 0, which is equivalent to measuring angles relative to a frame
rotating at angular velocity Ω (i.e. after a shift θi → θi − Ωt).

To synchronize the oscillators we need a coupling between their phases. The simplest
form of such coupling, pushing θi towards θj , and independent of a phase change by 2π, is
sin(θj − θi). The coupled dynamics of phases of many such oscillators is now governed by

θ̇i = ωi +

N
∑

j=1

Wij sin(θj − θi) , (4.37)

where Wij indicates the strength of the coupling to j from i. To make analytical progress,
we shall assume that all interactions have the same value of K/N . (As each oscillator is
coupled to N others, it makes sense to scale the interaction parameter by N .) In this case,
we can re-write Eq. (4.37) as

θ̇i = ωi + Kℑ
[

e−iθi

(

∑N
j=1 eiθj

N

)]

= ωi + Kℑ
[

meiφ
]

, (4.38)

where ℑ stands for the imaginary part, and we have indicated the average of all phase points
(around the complex imaginary circle) by meiφ. The order parameter

m =

∣

∣

∣

∣

∣

∑N
j=1 eiθj

N

∣

∣
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∣

∣

, (4.39)

is a measure of synchronization amongst the oscillators. If each oscillator follows its own
period, perhaps somewhat altered by the others, the phases in Eq. (4.39) will shift with time
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more or less independently, eventually coving the unit circle, in which case the average over
them will be zero. If a finite fraction of the oscillators is locked to the central frequency Ω
(thus appearing stationary in our rotating frame), their contributions will be time indepen-
dent, and (if more or less in phase) add us to a finite value. Without loss of generality, we
can set the overall phase of the sum to zero, φ = 0, resulting in the self-consistent set of
equations

θ̇i = ωi − Km sin θi . (4.40)

The solutions to this equation have two possible forms, mimicking the two populations of
oscillators. The first set includes oscillators locked to the central frequency, hence with
θ̇i = 0. To satisfy Eq. (4.40), these oscillators acquire a “phase lag”

sin θi =
ωi

Km
. (4.41)

Such locking is possible only if the natural frequency of the oscillator is sufficiently close
to the central frequency, i.e. as long as |ωi| < Km. Oscillators with frequency difference
|ωi| > Km cannot be synchronized to the central frequency, and their phases vary over time
according to

θ̇i = ωi − Km sin(θi) 6= 0 . (4.42)

We can self-consistently solve for m by summing over the phase contributions of the
stationary oscillators (the moving ones do not contribute to m). Since the behavior of the
locked oscillators depends only on their native frequency, we can use the probability density
p(ω) to write

m =
1

N

∑

locked oscillators j

eiθj =

∫ Km

−Km

dω p(ω)eiθ(ω) . (4.43)

We can change variables to θ = arcsin(ω/Km), and expand the narrow distribution to second
order around its peak to simplify the self-consistency equation to

m =

∫ π/2

−π/2

dθ(Km cos θ)p(Km sin θ)eiθ

=

∫ π/2

−π/2

dθ(Km cos θ)

[

p(0) − (Km sin θ)2

2
|p′′(0)| + · · ·

]

(cos θ + i sin θ)

= Km

[

π

2
p(0) − k2m2π

8
|p′′(0)| + · · ·

]

. (4.44)
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A non-zero solution for m is possible only for

K > Kc =
2

πp(0)
. (4.45)

Below Kc, m = 0 is the only solution, and all oscillators are unlocked. For larger couplings
the oscillators are synchronized and rotate together, while on reducing the coupling to its
critical value the order parameter vanishes as

m ∝
√

K − Kc . (4.46)

For example, if p(ω) can be approximated by a Gaussian distribution of width σ,

Kc =

√

8

π
σ , and m ≃

√

2π

(

K

Kc
− 1

)

. (4.47)

4.6 Turing patterns

So far we explored variations of a set of variables in time, ignoring dependencies on space.
In fact cells actively compartmentalize different molecules in different locations. Genetic
information is localized to the nucleus and has to be carried out to the rest of the cell by
diffusion of various molecules (mRNA or proteins). Even in the absence of physical barriers,
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chemical reactions can give rise to interesting patterns of spatio-temporal concentration
variations. Since diffusion is the most common mechanism for transport of molecules in
space, we shall examine the following set of reaction–diffusion equations

∂Ci

∂t
= Fi ({Cj}) + Di∇2Ci . (4.48)

Here, Di is the diffusion coefficient for molecular species i (with concentration Ci) and the
reactions are described by local non-linear terms included in {Ci}. Intrigued by the question
of how biological patterns (e.g. body shapes, or colorations of animal coats) occur in the first
place, Turing postulated a set of morphogens whose concentrations evolve as in Eqs. (4.48).

Let us specifically ask if it is possible to have a stable fixed point {C∗
i } as solution

to Eqs. (4.48) if spatial variations are forbidden (as in a very well mixed bag with very
large {Di}), but which becomes unstable if spatial variations are permitted. To answer this
question, let us linearize the reaction-diffusion equations around the fixed point as

Ci(~r, t) = C∗
i + ci(~r, t) , ⇒ ∂ci

∂t
=
∑

j

Mijcj + Di∇2ci , with Mij =
∂Fi

∂Cj

∣

∣

∣

∣

C∗

. (4.49)

Stability of the uniform solution implies that all eigenvalues of the matrix Mij are negative.
To examine the stability with respect to spatial variations we introduce Fourier transforms

ci(~r, t) =

∫

d~kei~k·~rc̃i(~k, t) , (4.50)

in terms of which Eq. (4.49) becomes

dc̃i(~k, t)

dt
=
∑

j

(

Mij − δijDik
2
)

. (4.51)

The original question can now be recast as whether the matrix Mij(k) = Mij − δijDik
2 can

have a positive eigenvalue at a finite wave-vector ~k. The answer is clearly negative if only
one chemical species is present, in which case λ(k) = λ(0)−Dk2 is obviously more negative

(hence more stable) at finite ~k. However, Turing showed that even with two morphogens it
is possible to find a finite wave-length instability.

Let us examine the 2 × 2 linear-stability matrix

M(k) =

(

M11 − D1k
2 M12

M21 M22 − D2k
2

)

. (4.52)

The product of the two eigenvalues is given by the determinant of the above matrix as

λ+(k)λ−(k) = det M(k)

= (M11M22 − M12M21) − (M11D2 + M22D1) k2 + D1D2k
4 . (4.53)
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At k = 0 (uniform state) both eigenvalues are by fiat negative, and thus det M(0) (the
term within the first brackets above) is positive. It is possible that both eigenvalues remain
negative at all wavevectors, as depicted by the curves marked by 1 and 2 in the Figure below.
For the fixed point to become unstable to a perturbation at finite k, the larger eigenvalue,
λ+(k), has to pass through zero and become positive. Note that since

λ+(k) + λ−(k) = trM(k) = (M11 + M22) − (D1 + D2)k
2 , (4.54)

the other eigenvalue, λ−(k), has to become even more negative. Since both the first and last
terms in Eq. (4.53) are positive, a change of sign for the eigenvalue is only possible if the
middle term is large and positive, i.e.

(M11D2 + M22D1) > 0 , while (M11 + M22) < 0 . (4.55)

(The latter is required by the stability condition for k = 0.) If so, then Eq. (4.53) can describe
a curve that crosses zero at two points, k+ and k−, with a maximum at an intermediate km.
There will then be a band of unstable modes spanning wave-numbers from k− to k+ (curves
labelled by 3 in the figure), and by setting this equation (and its derivative) to zero, it is
easily checked that

k2
+ + k2

− = 2k2
m =

M11D2 + M22D1

D1D2
. (4.56)
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The value of the product in Eq. (4.53) must be negative at its maximum if λ+(km) > 0
while λ−(km) < 0, and thus we must require

λ+(km)λ−(km) = det M(0) − (M11D2 + M22D1)
2

4D1D2

< 0

⇒ (M11D2 + M22D1) > 2
√

D1D2 det M(0) . (4.57)

Clearly the conditions in Eq. (4.55) cannot be simultaneously satisfied if both M11 and
M22 are negative, or if both diffusion coefficients have the same value. Let us suppose that
M11 < 0 and M22 > 0, in which case the requirement is

|M11|
D2

D1
< M22 < |M11| , ⇒ D1 > D2 . (4.58)

The negative diagonal term thus corresponds to the faster diffusing component. Since neg-
ative terms are usually associated with inhibition, the above conclusion can be summarized
somewhat imprecisely by the statement that finite wavelength instabilities arise from compe-
tition of long-range inhibition and short-range excitation. In fact, the additional requirement
det M(0) = M11M22 − M12M21 > 0, implies that the off-diagonal terms M12 and M21 must
have opposite signs. If M12 < 0, species 1 being both self and cross inhibitory, the instability
occurs when the two components are out of phase; otherwise the two species will vary in
phase. In the extreme limit of D2 = 0 and M22 < 0 instability sets in for all wavenum-
bers with k2 > k2

− = det M(0)/(M22D1). Of course, in all cases the instability wavelength
must be large enough so that the assumptions implicit in the continuum formulation of
reaction-diffusion equations remain valid.
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