
3.2 Molecular Motors

A variety of cellular processes requiring mechanical work, such as movement, transport
and packaging material, are performed with the aid of protein motors. These molecules
consume fuel, typically from conversion of ATP to ADP, to generate force and motion. Unlike
macroscopic engines which proceed deterministically through a cycle, the tiny molecular
machines are constantly agitated by thermal fluctuations and their operation is inherently
stochastic. There are two common elements to most molecular motors:
• An asymmetry that determines the direction of motion. In the case of myosin this is
provided by the polarity of actin filaments along which it moves, e.g. in contracting muscles.
Kinesin and dynein are two motors that transport cargo along microtubules (MTs), but in
opposite directions; kinesin moving to the (+) end, and dynein towards the (-) end.

• The asymmetry encountered by motors is reminiscent of ratchets: The motor experiences
a periodic but asymmetric potential along its track. However, it is well known that Brow-

nian ratchets cannot extract energy from thermal fluctuations, unless an energy consuming
mechanism is employed to rectify motion in a ratchet potential. A general scheme is for
the motor to have a number of internal states, e.g. bound to ATP or ADP, each of which
experiences a different ratchet potential. As we shall see, moving between the internal states
enables trapping and rectifying the fluctuations. A typical step size for kinesin along a MT
is a ≈ 8.2nm, and the energy released by hydrolysis of one ATP molecule in physilogical
conditions is about ∆Gh = 12kBT . Assuming the energy released by hydrolysis of a single
ATP is completely used up leads to a maximal possible force of Fmax = ∆Gh/a ≈ 6.2 pN.
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3.2.1 Asymmetric Hopping

Rather than working with a continuous ratchet potential, we can capture much of the same
physics by examining so called asymmetric hopping models,3 in which the motor makes
discrete jumps along its track. However, at each site along the track, it can be in a discrete
number of internal states. For example, in the system depicted below, there are 4 internal
states at each site, e.g. corresponding to: MT, MT+ATP, MT+ADP+P, MT+ADP. One

then assigns rates for transitions along the track and between internal states. With proper
choice of asymmetric rates the motion can be biased in one direction.

Let us demonstrate the procedure and the constraints involved for a simple model with
only two internal states, say representing the motor bound to ATP or ADP. We shall denote
the rates for transitions between the two internal states by u and d. As the motor moves
to the next site along the track it must change its internal state, and we assign asymmetric
rates of r and l for moving to the right (T→D) and the left (D→T) respectively. The Master
equations governing the evolution of probabilities for these states are

dpD(n, t)

dt
= rpT (n − 1) + dpT (n) − (u + l)pD(n)

dpT (n, t)

dt
= lpD(n + 1) + upD(n) − (d + r)pT (n) . (3.23)

For slowly varying probabilities, the continuum form of these equations is

∂pD(x, t)

∂t
= (r + d)pT (x) − (u + l)pD(x) − ar

∂

∂x
pT (x, t) +

a2r

2

∂2

∂x2
pT (x, t)

∂pT (x, t)

∂t
= (l + u)pD(n) − (d + r)pT (n) + al

∂

∂x
pD(x, t) +

a2l

2

∂2

∂x2
pD(x, t) . (3.24)

We can extract the behavior of the above equations for slow and long wavelength variations
by first noting that (relatively) rapid interconversion between internal states leads to a local
equilibrium in which

(r + d)pT (x) = (u + l)pD(x) , (3.25)

or in terms of the net probability, p(x) = pT (x) + pD(x),

pT (x) =
u + l

u + d + r + l
p(x) and pD(x) =

d + r

u + d + r + l
p(x) . (3.26)

3M.E. Fisher and A.B. Kolomeisky, PNAS 96, 6597 (1999).
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Adding the two Eqs (3.24) and substituting from Eq. (3.26) leads to a standard drift-diffusion
equation for p(x, t), with drift velocity

v = a
ru − ld

u + d + r + l
, (3.27)

and diffusion coefficient

D =
a2

2

ru + ld + 2lr

u + d + r + l
. (3.28)

The requirement of thermal equilibrium places stringent constraints on any pair of for-
ward/backward reaction rates. In particular, assuming an activation energy ∆Ua between
internal states, and an energy difference ∆Ua for the steps along the track, we must have

u

d
= e−β∆Ua and

l

r
= e−β∆Us . (3.29)

Substituting these forms in the equation for velocity, we find

v = a
lu

u + d + r + l

(

eβ∆Us − eβ∆Ua

)

. (3.30)

When there is no input of energy, the two paths to go between T and D states should be
equivalent, ∆a = ∆s, and there is no net velocity. The hydrolysis of ATP provides a source of
energy, such that ∆Us = ∆Ua + ∆Gh, encouraging steps to the right and a positive velocity.

3.2.2 Force of a Brownian Motor

To find out how efficiently the energy input from ATP is converted to work, we need to know
the force exerted by the motor in traveling a distance a at each step. This is not an easy
task as it is not possible to directly measure all dissipative and other forces acting on the
small molecule. The following procedures have been used to estimate forces on the motor.

The stall force is obtained by pulling the motor back with an optical tweezer. The
motor must now also climb up against the potential from the external force F , resulting in

r

l
= eβ(∆Us−Fa) and v = a

lu

u + d + r + l

(

eβ(∆Ua+∆Gh−Fa) − eβ(∆Ua)
)

. (3.31)
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Clearly the motor stalls (v = 0) when F = Fs = Fmax = ∆Gh/a. This makes sense, as there
are no dissipative forces acting on a stationary motor.

The Einstein force is obtained by analogy to Brownian particles from a ratio of velocity
and diffusion coefficients. A particle in solution experiences a drag force proportional to its
velocity, such that v = µF where µ is its mobility. In the absence of an external force, the
particle diffuses in solution with diffusion constant D. Diffusion originates in collisions with
thermally excited atoms in the fluid, and to ensure proper thermal equilibrium the mobility
and diffusion constant must be related by the Einstein relation, D = µkBT . From these
relations we can define an Einstein force

FE = kBT
v

D
=

2kBT

a

ru − ld

ru + ld + 2lr
=

2kBT

a

ru
ld
− 1

ru
ld

+ 1 + 2 r
d

, (3.32)

where we have used the values for drift and diffusion of the motor along its track from the
two-state hopping model. Since (ru)/(ld) = eβ∆Gh, in the limit β∆Gh → 0

FE ≈
Fmax

1 + r/d
,

while for β∆Gh ≫ 1, FE ≈ 2kBT/a. Thus the Einstein force is always less than the maximum
possible force, and limited by thermal fluctuations.
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