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1 Kinetics of protein–DNA interaction

1.1 Reaction Kinetics
1 The rate of change with time of the concentration of a protein–DNA complex is the sum
of two terms. A positive contribution due to complex formation between a previously free
specific site on a DNA molecule and a previously free protein, and a negative contribution due
to complex break-up. At sufficiently low concentrations, the first term must be proportional
to the probability of finding the a specific sites on the DNA molecule and a free protein
molecule at the same site, and the second term must be proportional to the concentration
of the complex:

d

dt
[P |DNA] = ka[P ][DNA] − kd[P |DNA]. (1)

Let us apply this equation to E. coli bacteria and lac repressors introduced in previous
lectures. In vitro experiments on repressor–DNA solutions (containing the operator target
sequence) report that on-rate is ka ∼ 1010M−1s−1 under standard conditions.

Suppose that at times t < 0 there are no repressor–DNA complexes because the con-
centration of lactose is high and repressors are in inactive state. At time t = 0, the lactose
concentration drops to zero. How long will it take the activated lac repressors to locate the
specific operator sequence and switch-off gene expression? There are only a few operator
sequences per E. coli. Assuming a volume of 1µm3 , the (initial) concentration of unoccupied
operator sequences [DNA] is of order 1/µm3 or about 10−9M (concentrations are usually
presented in molar units M = 6 × 1026m−3). According to Eq. (1), for early times t, the
concentration of occupied operator sequences will grow linearly in time as

d

dt
[P |DNA] ≈ (ka[DNA])[P ] = [P ]/τ, (2)

where we have identified τ = 1/(ka[P |DNA]) as the characteristic time scale for a free
repressor to locate the operator sequence. For the measured value of ka, this search time is
of order τ ∼ 0.1s.

1.2 Debye-Smoluchowski theory

In this section we will compute the on–rate ka. The classical theory of the on–rate of
diffusion–limited chemical reactions is due to Debye and Smoluchowski. Assume a spherical
container (the cell) of radius R and place the specific target sequence at the center of the

1First two sections closely follow discussion in R. F. Bruinsma, Physica A 313, 211-237 (2002)
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container. Let C(~r, t) be the concentration of free repressors. The concentration field obeys
the diffusion equation

∂C

∂t
= D3∇2C (3)

with D3 the diffusion constant of the protein in cytoplasm. We now want to know when the
target sequence is occupied for the first time by a protein. Assume that this will happen
when a diffusing protein enters for the first time a small sphere, of radius b ≪ R, at the
origin. Protein must find the exact target sequence, thus b ≈ 0.34nm.

We will solve an easier problem by assuming that the small sphere at the origin acts as
an absorber. Whenever a diffusing particle hits the small sphere, it disappears (free protein
particle becomes bound protein-DNA complex). This approximation is valid, when specific
sites on DNA are unoccupied. At the outer radius R we are constantly providing particles
to keep concentration at a fixed value CR. This is an easier problem because under these
conditions, a time-independent steady-state current I is established of protein molecules
diffusing from the outer to the inner sphere. To obtain this current, we must solve Laplaces
law:

∇2C = 0 (4)

with the boundary conditions C(R) = CR and C(b) = 0 (because diffusing particles disappear
at r = b). Spherical symmetric solution is

C(r) = C0

[

1 − b

r

]

, (5)

where C0 = CR/(1 − b/R) ≈ CR for b ≪ R. The diffusion current density of proteins along

the radial inward direction is ~J = −D3∇C = −D3bC0/r
2 êr, so the diffusion current I

equals:
I = J(r)4πr2 = −4πD3bC0 (6)

Now compare this result with Eq. (2). The left-hand side of Eq. (2) is the number of
complexes forming per second and must equal (minus) the incoming current I of free proteins.
On the right-hand side we can identify C0 with the free proteins concentration [P ] far from
the operator. This leads to

ka = 4πD3b (7)

known as the Debye–Smoluchowski rate. If we use for the target radius base-pair distance b ≈
0.34nm and in vitro measured diffusion rate for lac repressors in water D3 ≈ 3× 10−11m2s−1

we find that on-rate is of order ka ≈ 108M−1s−1. We expect that actual on-rates are
even smaller, because it takes certain time for protein to line up with the target and also
diffusion constant D3 is smaller in cytoplasm. Recall that for lac repressor measured on-
rate ka ≈ 1010M−1s−1 is two orders of magnitudes larger than the highest possible rate
obtained by diffusion. This implies that proteins use some other mechanism to find specific
site quickly.
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1.3 Berg – von Hippel theory

In 1980s Berg and von Hippel proposed that proteins use combination of 1D (sliding) and
3D (jumps) diffusion to quickly find the target site on the DNA (Figure 1). Proteins are able

TF

Figure 1: Schematics of 1D/3D search for target site on the DNA. Dashed lines represent
3D diffusion trajectories and thick lines are 1D sliding footprints.

to bind to any site on the DNA and then diffuse along the DNA (sliding). Once proteins
detach from the DNA, they diffuse around until they attach to another site on the DNA
(jump). Proteins keep sliding and jumping until they find the specific target site, where they
get stuck because binding to the specific target site Es ∼ 20 − 25kBT is a lot stronger than
binding to a non-specific site Ens ∼ 5 − 10kBT .

During jumps it is reasonable to assume that protein can attach to any site on the DNA
with equal probability, because DNA is in very compact form and even if two DNA segments
are close in real space, they could be very far apart in the DNA sequence. Sliding events are
thus independent and they start at uniformly distributed random positions along the DNA
sequence. Probability that protein finds the target location in one sliding event is q = n/M ,
where n is number of visited sited during each sliding event and M is total number of sites
on the DNA.

First we consider unrealistic case where every sliding event takes a fixed amount of time
τ1 and fixed number of sites n are visited by protein. The probability that single protein
will find the target in exactly NR rounds of sliding and jumping is p(NR) = q(1 − q)NR−1,
where the 1 − q factor reflects the probability that protein didn’t find the target in first
NR − 1 rounds and factor q reflects the probability that protein has found the target in the
last round. The average number of rounds needed for protein to find the target is:

NR =

∞
∑

NR=1

NRq(1 − q)NR−1 =
1

q
=

M

n
(8)
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The average search time for protein to find the target site is:

ts = NR(τ1 + τ3) =
M

n
(τ1 + τ3), (9)

where τ3 is average time of 3D jump.
In reality sliding events don’t take fixed amount of time. Protein detach from the DNA

with rate k
(ns)
d = 1/τ1 and time of each sliding event is taken from exponential distribution

ρ(τ1) = exp(−τ1/τ1)/τ1. During sliding event every visited site is important, because protein
is immediately trapped in specific site. Therefore we need to take the average distance
between the leftmost and rightmost site to estimate the number of visited sites n(τ1) =
√

16D1τ1/πb2, where b is basepair distance, and not just the distance between the start and

end site of the sliding, which would give
√

2D1τ1/b2. The average number of rounds needed
for protein to find the target in this case is:

〈NR〉 =
∞
∑

NR=1

NR

〈

q(τ1,NR
)

NR−1
∏

i=1

[1 − q(τ1,i)]

〉

, (10)

where τ1,i is time protein spent during ith sliding event and bracket denotes averaging over all
possible sliding times τ1,i. Sliding events are independent and this equation can be simplified:

〈NR〉 =
∞
∑

NR=1

NR〈q〉[1 − 〈q〉]NR−1 =
1

〈q〉 =
Mb

2
√

D1τ1

, (11)

where we used 〈n〉 =
∫

∞

0
n(τ1)ρ(τ1)dτ1 = 2

√

D1τ1/b2. Calculating average search time is a
bit more complicated:

〈ts〉 =
∞
∑

NR=1

NR

〈(

NR
∑

i=1

[τ1,i + τ3]

)

q(τ1,NR
)

NR−1
∏

i=1

[1 − q(τ1,i)]

〉

〈ts〉 = 〈NR〉τ3 +

∞
∑

NR=1

{

(NR − 1)〈q〉(1 − 〈q〉)NR−2 [〈τ1〉 − 〈qτ1〉] + 〈qτ1〉(1 − 〈q〉)NR−1

}

〈ts〉 = 〈NR〉τ3 +

{

〈NR〉 [〈τ1〉 − 〈qτ1〉] + 〈NR〉〈qτ1〉
}

〈ts〉 = 〈NR〉
(

〈τ1〉 + τ3

)

=
Mb

2
√

D1τ1

(

τ1 + τ3

)

(12)

It is interesting to evaluate the optimal sliding time τ1
(opt) that minimizes the average search

time.

0 =
∂〈ts〉
∂τ1

=
Mb

2
√

D1τ1

(

1

2
− τ3

2τ1

)

=⇒ τ1
(opt) = τ3 (13)

For τ1 > τ1
(opt), protein spends too much time sliding. In the other case τ1 < τ1

(opt) is jumping
a lot and spends too much time with 3D diffusion. Protein dissociation rate from the DNA
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k
(ns)
d = 1/τ1 strongly depends on the binding strength Ens (homework), which depends on

the salt concentration in the cytoplasm. Increasing the salt concentration reduces the non-
specific binding energy Ens since this interaction is predominantly electrostatic. One would
expect that at standard physiological conditions τ1 is close to the optimal value τ3, but it
turns out that protein spends more time sliding than jumping τ1 > τ3. Typical measured
sliding time for lac repressor is τ1 ∼ 10−3s, while we can estimate the typical jumping time
τ3 ∼ V/D3L ∼ 10−4s, where V ∼ 1µm3 is volume of the E. coli, L = Mb ∼ 1mm is DNA
length and D3 ≈ 3× 10−11m2s−1 measured diffusion constant in the cytoplasm. Using these
results and measured diffusion constant D1 ≈ 5 × 10−14m2s−1 we can estimate the average
search time:

〈ts〉 =
L

2
√

D1τ1

(

τ1 + τ3

)

∼ 10 − 100s (14)

When np proteins are searching for target site simultaneously it is important to know the
search time of the fastest of the np proteins, because once the first protein binds the target
site, gene expression is shut down. Search time for a single protein to find the target site is
exponentially distributed: ρ1(ts) = exp(−ts/〈ts〉)/〈ts〉. Distribution of search times for the
fastest of the np proteins is obtained by standard extreme value distribution.

ρnp
(ts) = npρ1(ts)

(

1 −
∫ ts

0

ρ1(t)dt

)np−1

=
np

〈ts〉
exp(−tsnp/〈ts〉) (15)

The mean search time of the fastest of the np proteins to find the target location goes as
〈ts〉/np. There could be of the order of np ∼ 100 copies of proteins searching for target at
the same time, which greatly speeds up the search time of proteins for the target site.
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