
1 Sequence

1.1 Probability & Information

We are used to dealing with information presented as a sequence of letters. For example,
each word in English languate is composed of m = 26 letters, the text itself includes also
spaces and punctuation marks. Similarly in biology the blueprint for any organism is the
string of bases along DNA, e.g. AGTTCCAG· · · , where at each position there is a choice
of m = 4 possible characters. This information is then (partly) transcribed into proteins,
made of sequences of m = 20 amino acids. Clearly any of these sequences is far from
random and there are constraints and correlations at many scales that conspire to make
them meaningful. Nonetheless, as a means to unravel such constraints, it may be helpful to
start with simple models which assume that sequences are randomly generated according to
some rules. Comparisons of such models with the actual sequences may then provide some
insights.

As a simple example, let us consider a sequence of N characters, each chosen indepen-
dently with probabilities {pα}, with α = 1, 2, · · · ,m. (This choice is sometimes referred to as
IID, for identical, independently distribute random variables.) Since the probabilities must
be normalized, we require

m∑
α=1

pα = 1. (1.1)

The probability of finding a sequence S = {α1, · · · , αN} is then given by the product of
probabilities for its elements, as

p(S|{pα}) =
N∏
`=1

pα` . (1.2)

How many other sequences S ′ have this probability? Clearly as long as the number of
occurrences {Nα} of each character is the same, the probability will be identical, i.e. the
order of the elements does not matter in calculating the probability for this simple model.
The number N of possible permutations of the elements in S is

N =
N !∏m

α=1Nα!
. (1.3)

This is known as the multinomial coefficient, as it occurs in the expression

(p1 + p2 + . . .+ pm)N =
′∑

{Nα}

pN1
1 pN2

2 · · · pNmm × N !∏m
α=1Nα!

, (1.4)

where the sum is restricted so that
∑m

α=1Nα = N . Note that because of normalization, both
sides of the above equation are equal 1. The terms within the sum on the right-hand side
are known the multinomial probabilities

p(N1, N2, · · · , Nm) = pN1
1 pN2

2 · · · pNmm × N !∏m
α=1Nα!

. (1.5)
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With the assumption of independence, the probability of a sequence is determined entirely
by the set {Nα} according to Eq. (1.5). It is easy to check that the most likely set (the mode
{N∗α}) coincides with the average (mean {〈Nα〉}), and given by

N∗α = 〈Nα〉 = pαN. (1.6)

Indeed, in the limit of large N , the overwhelming number of sequences generated will have
the above composition. The number of sequences with character counts Nα = pαN is given
by Eq. (1.3). Crudely speaking, this number N helps quantify the “information” contained
within a sequence of length N , as it indicates how many different sequences have the same
composition of characters (and hence the same a priori probability. We expect a good
measure of information content to scale roughly linearly with the message length. (In the
absence of context clues or syntax rules, a message twice as long should carry about twice
as much information.) As convenient measure, and taking clues from Statistical Mechanics,
we take the logarithm of Eq. (1.3), which gives

logN = logN !−
∑
α

logNα!

≈ N logN −N −
∑
α

(Nα logNα −Nα)

= −N ·
∑
α

(
Nα

N

)
log

(
Nα

N

)
.

(Stirling’s approximation for N ! is used for all Nα � 1.) The above formula is closely related
to the entropy of mixing in thermodynamics, and quite generally for any set of probabilities
{pα}, we can define a mixing entropy

S({pα}) = −
∑
α

pα log pα. (1.7)

Entropy is typically envisioned as a measure of disorder, and the information content I({pα})
(picking up a specific element amongst a jumble of possibilities) is related to −S({pα}).

Let us illustrate the relations among entropy and information in the context of DNA.
To transmit a sequence, ACTG · · · , along a binary channel we need to encode 2N bits,
as there are (22)N possibilities. However, suppose that from prior analysis of DNA of a
particular organism, we know that a typical sequence of length N has a likely composition
〈NA〉 6= 〈NG〉 6= · · · . Given a priori knowledge of the probabilities pα = Nα/N , the number
of such likely sequences is

N =
N !∏m

α=1Nα!
� (22)N ,

or, upon taking the logarithm,

log2N = −N
∑
α

pα log2 pα < 2N.
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We gain a definite amount of knowledge by having advance insight about {pα}. Instead of
having to specify 2 bits per “letter” of DNA, we can get by with a smaller number. The
information gained per letter is given by

I({pα}) = 2−
∑
α

pα log2

(
1

pα

)
. (1.8)

If pα = 1/4, then Eq. (1.8) reduces to 0, which is consistent—we gain no information. On
the other hand, if pA = pT = 0 and pC = pG = 1

2
, then

I = 2−
∑
G,C

1

2
log2 2 = 1 bit per base.

1.2 Evolving Probabilities

As organisms reproduce the underlying genetic information is passed on to subsequent gen-
eration. The copying of the genetic content is not perfect, and leads to a diverse and evolving
population of organisms after many generations. The changes are stochastic, and are thus
appropriately described by evolving probability distributions. After motivating such evolv-
ing probabilities in the contexts of DNA and populations, we introduce the mathematical
tools for treating them.

1.2.1 Mutations

Consider the flow of information from DNA, transcribed to messenger RNA, and eventually
translated to an amino acid chain. Suppose we begin with the DNA fragment

ATT CGC ATG ,

which when unwound and transcribed to mRNA, appears as the complementary messenger
chain

UAA GCG UAC .

The protein building machinery (ribosome) translates this to a peptide chain consisting of a
leucine, an alanine, and a tyrosine molecule, symbolically,

Leu Ala Tyr .

Suppose, however, that a replication mistake causes the DNA strand’s last “letter” to change.
Instead of ATG, the last codon now reads ATC, which is a “stop signal”

Leu Ala STOP.

Such a mutation, let’s say in the middle of a protein chain, will stop the translation process.
The mutation is deleterious and the off-spring will not survive. However, as a result of the
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redundancy in the genetic code, there are also mutations that are synonymous, in that they
do not change the amino acid which eventually results. Because these synonymous muta-
tions do not affect the biological viability of the organism, we can find genes whose exact
DNA varies from individual to individual. This has opened up the field of DNA “fingerprint-
ing”: blood can be matched to the person who shed it by comparing such single nucleotide
polymorphisms (SNPs). Non-synonymous mutations are not necessarily deleterious and may
lead to viable off-spring.

1.2.2 Classical Genetics

The study of heredity began long before the molecular structure of DNA was understood.
Several thousand years of experience breeding animals and plants led, eventually, to the idea
that hereditary characteristics are passed along from parents to offspring in units, which are
termed genes.

Classical genetics states that some genes are dominant and others recessive. For example,
suppose we have a certain “heredity unit” symbolized as A1 whose presence in an individual
leads to brown eyes. A variant gene, A2, sometimes appears in the population; individuals
carrying it grow up with blue eyes. Humans, among other diploid organisms, carry two genes
for each trait, which are called alleles. According to the classical concept of dominance,
having one dominant allele outweighs the presence of a recessive one. Brown eyes turn out
to be dominant in humans, so a person with an A1A2 mix of alleles has brown irises, just
like one whose alleles read A1A1. Only an A2A2 individual develops blue irises.

1.2.3 Master Equation

Let us consider the evolution of probabilities in the context of the simplified model intro-
duced earlier of N independently distributed sites. We model mutations by assuming that
at subsequent time-steps (generations) each site may change its state (independent of the
other sites), say from α to β with a transition probability πβα. The q × q such elements
form the transition probability matrix ←→π . (Without the assumption that the sites evolve

independently, we would have constructed a much larger (qN × qN) matrix
←→
Π . With the

assumption of independence, this larger matrix is a direct product of transition matrices for

individual sites, i.e.
←→
Π =←→π 1 ⊗←→π 2 ⊗ · · · ⊗←→π N .) Using the transition probability matrix,

we can track the evolution of the probabilities as

pα(τ + 1) =
m∑
β=1

παβpβ(τ), or in matrix form ~p(τ + 1) =←→π ~p(τ) =←→π τ~p(1), (1.9)

where the last identity is obtained by recursion, assuming that the transition probability
matrix remains the same.

Probabilities must be normalized to unity, and thus the transition probabilities are con-
strained by ∑

α

παβ = 1, or πββ = 1−
∑
α6=β

παβ. (1.10)
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The last expression formalizes the statement that in probability to stay in the same state
is the complement of the probabilities to make a change. Using this result, we can rewrite
Eq. (1.9) as

pα(τ + 1) = pα(τ) +
∑
β 6=α

[παβpβ(τ)− πβαpα(τ)] . (1.11)

In many circumstances of interest the probabilities change slowly and continuously over time,
in which case we introduce a small time interval between subsequent events, and write

pα(τ + 1)− pα(τ)

∆t
=
∑
β 6=α

[παβ
∆t

pβ(τ)− πβα
∆t

pα(τ)
]
. (1.12)

In the limit of small ∆t, [pα(τ + 1)− pα(τ)]/∆t ≈ dpα/dt, while

παβ
∆t

= Rαβ +O(∆t) for α 6= β, (1.13)

are the off-diagonal elements of the matrix
←→
R of transition probability rates. The diagonal

elements of the matrix describe the depletion rate of a particular state, and by conservation
of probability must satisfy, as in Eq. (1.10),∑

α

Rαβ = 0, or Rββ = −
∑
α6=β

Rαβ. (1.14)

We thus arrive at
dpα(t)

dt
=
∑
β 6=α

(Rαβpβ(t)−Rβαpα(t)) , (1.15)

which is known as the Master equation.

1.2.4 Steady state

Because of the conservation of probability in Eqs. (1.10) and (1.14), the transition probability

matrix ←→π , and by extension the rate matrix
←→
R have a left-eingenvector

←−
v∗ = (1, 1, · · · , 1)

with eigenvalues of unity and zero respectively, i.e.

←−
v∗←→π =

←−
v∗ , and

←−
v∗
←→
R = 0. (1.16)

For each eigenvalue there is both a left eigenvector and a right eigenvector. The matrices
←→π and

←→
R thus must also have a right-eigenvector

−→
p∗ such that

←→π
−→
p∗ =

−→
p∗ , and

←→
R
−→
p∗ = 0. (1.17)

The elements of the vector
−→
p∗ represent the steady state probabilities for the process. These

probabilities no longer change with time. The other eigenvalues of the matrix determine how
an initial vector of probabilities approaches this steady state.
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As a simple example, let us consider a binary sequence (i.e. m = 2) with independent
states A1 or A2 at each site.1 Let us assume that the state A1 can “mutate” to A2 at a rate
µ2, while state A2 may change to A1 with a rate µ1. The probabilities p1(t) and p2(t) now
evolve in time as

d

dt

(
p1

p2

)
=

(
−µ2 µ1

µ2 −µ1

)(
p1

p2

)
. (1.18)

The above 2× 2 transition rate matrix has the following two eigenvectors(
−µ2 µ1

µ2 −µ1

)( µ1

µ1+µ2
µ2

µ1+µ2

)
= 0, and

(
−µ2 µ1

µ2 −µ1

)(
1
−1

)
= −(µ1 + µ2)

(
1
−1

)
.

(1.19)

As anticipated, there is an eigenvector
−→
p∗ with eigenvalue of zero; the elements of this vector

are normalized to add to unity, as required for probabilities. We have not normalized the
second eigenvector, whose eigenvalue −(µ1 + µ2) determines the rate of approach to steady
state.

To make this explicit, let us start with a sequence that is purely A1, i.e. with p1 = 1 and
p2 = 0 at t = 0. The formal solution to the linear differential equation (1.18) is(

p1(t)
p2(t)

)
= exp

[
t

(
−µ2 µ1

µ2 −µ1

)](
p1(0)
p2(0)

)
. (1.20)

Decomposing the initial state as a sum over the eigenvectors, and noting the action of the
rate matrix on each eigenvector from Eq. (1.19), we find(

p1

p2

)
= exp

[
t

(
−µ2 µ1

µ2 −µ1

)][( µ1

µ1+µ2
µ2

µ1+µ2

)
+

µ2

µ1 + µ2

(
1
−1

)]
=

(
µ1

µ1+µ2
+ e−(µ1+µ2)t µ2

µ1+µ2
µ2

µ1+µ2
− e−(µ1+µ2)t µ2

µ1+µ2

)
. (1.21)

At long times the probabilities to find state A1 or A2 are in the ratios µ1 to µ2 as dictated
by the steady state eigenvector. The rate at which the probabilities converge to this steady
steady is determined by the eigenvalue −(µ1 + µ2).

1.2.5 Mutating Population

The previous example of a binary sequence of length N can be recast and interpreted in
terms of the evolution of a population as follows. Let us assume that A1 and A2 denote two
forms of a particular allele. In each generation each individual is replaced by an offspring
that mostly retains its progenitor’s allele, but may mutate to the other form at some rate.
In this model the total population size is fixed to N , while the sub-populations N1 and N2

1Clearly with the assumption of independence we are really treating independent sites, and the insistence
on a sequence may appear frivolous. The advantage of this perspective, however, will become apparent in
the next section.
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may vary. A particular state of the population is thus described by N1 = n and N2 = N −n,
and since n = 0, 1, · · · , N there are N + 1 possible states. At a particular time, the system
may be in any one of these states with probability p(n, t), and we would like to follow the
evolution of these probabilities.

After an individual replication event (A1 to A1 at rate −µ2, A1 to A2 at rate µ2, A2 to
A1 at rate µ1, or A2 to A2 at rate −µ1), the number N either stays the same, or changes
by unity. Thus the transition rate matrix only has non-zero terms along or adjoining to the
diagonal. For example

Rn,n+1 = µ2(n+ 1), and Rn,n−1 = µ1(N − n+ 1), (1.22)

where the former indicates that a population of n+ 1 A1s can decrease by one if any one of
them mutates to A2, while the population a population with n−1 A1s increases by one if any
of A2s mutates to A1. The diagonal terms are obtained from the normalization condition in
Eq. (1.14) resulting in the Master equation

dp(n, t)

dt
= µ2(n+ 1)p(n+ 1) + µ1(N − n+ 1)p(n− 1)− µ2np(n)− µ1(N − n)p(n) , (1.23)

for 0 < n < N , and with boundary terms

dp(0, t)

dt
= µ2p(1)− µ1Np(0), and

dp(N, t)

dt
= µ1p(N − 1)− µ2Np(N) . (1.24)

1.2.6 Enzymatic reaction

The appeal of the formalism introduced above is that the same concepts and mathematical
formulas apply to a host of different situations. For example consider the reactions

A + E 
a′

b′ B + E , (1.25)

where the enzyme E facilitates the conversion of A to B at a rate a′, and the backward
reaction at rate b′. In a well mixed system, the numbers NA and NB = N −NA of the two
species evolve according to the “mean-field” equation

dNA

dt
= −a′NENA + b′NENB = −aNA + b(N −NA) , (1.26)

where a = NEa
′ and b = NEb

′. In this approximation, the fluctuations are ignored and the
mean numbers of constituents evolve to the steady state with N∗A/N

∗
B = b/a.

However, in a system where the number of particles is small, for example for a variety
of proteins within a cell, the mean number may not be representative, and the entire dis-
tribution is relevant. The probability to find a state with NA = n and NB = N − NA,
then evolves precisely according to Eq. (1.23) introduced above in the context of mutating
populations. From the equivalence of this equation to the independently evolving binary
states, we know that the final steady steady state solution also describes a chain of binary
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elements independently distributed with probabilities p∗A = b/(a + b) and p∗B = a/(a + b).
Hence, the steady state solution to the complicated looking set of equations (1.23) is simply

p∗(n) =

(
N
n

)
bnaN−n

(a+ b)N
. (1.27)

In fact, we can follow the full evolution of the probability to this state, starting let’s say with
an initial state that is all A.
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