
8.592J–HST.452J: Statistical Physics in Biology 
Assignment # 6 

Force-Extension Curves
 

1. Linear polymers: Using optical tweezers, it is now possible to pull on the two ends of a 
single molecule. (Actually the tweezers pull on latex balls that are attached to the ends of 

Fthe polymer; a complication that we shall ignore.) In the presence of the force F pulling on 
the ends of the polymer, there is an additional energy term 

F F δE = −F · R, 

where RF = FrN − Fr1 is the end–to–end distance (between the first and N th monomers) of the 
chain. 

F(a) For an ideal polymer, the number of configurations with an end–to–end distance of R is 
given by the usual Gaussian formula 

  

( ) N 3R2 
FR = exp − .ΩN 

g
3 2 (2πNa2/3) / 2Na2

By integrating the Boltzmann weight over all RF , calculate the (Gibbs) partition func
tion Z(N, F, T ) at a temperature T . Using this result, obtain the mean extension RF = 

FkBT∂ ln Z/∂F along the direction of the force F . 

(b) For other cases in which ΩN does not have a simple form (such as for self-avoiding 
polymers), it is still possible to obtain the linear response of the polymer to small force. To 

( )

F F Fthis end, expand the Boltzmann weight exp F · R/kBT to second order in F , and hence 

show that 
1 / )

R2RF = F + O(F 3),
3kBT 0 

where (R2)
0 is the mean end–to–end squared d istance of the polymer in the absence of the 

force. 

(c) Dimensional analysis suggests that quite generally the extension–force curve for polymers 
should have the form 

 

J

 

F (R2)RF 0 
J = Φ . 
(R2)

0 
kBT

The left hand side is a dimens ionless extension; on the right hand side a dimensionless 
combination involving the force appears as the argument of an unknown function Φ. At 
large forces F , the polymer becomes stretched such that Rf ∝ N . For self-avoiding polymers 
J

(R2)
0 ≈ aNν with ν ≈ 0.59. Use these facts to deduce a non-linear behavior RF ∝ F λ for 

the extension at large force, and give the value of the exponent λ. 
***** 

F2. Denaturing DNA by force: Obtain the phase diagram of DNA pulled by a force F , by 
generalizing the Poland–Scheraga model as follows: 
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(a) By integrating over the position vectors, show that the (Gibbs) partition function of 
DNA of length N can be decomposed into products of contributions from double-stranded 
rods and single stranded bubbles, as 

L

Z(N, F ) = R(ℓ1)B(ℓ2)R(ℓ3) · · · , with ℓ1 + ℓ2 + ℓ3 + · · · = N. 
ℓ1,ℓ2,ℓ3,··· 

(b) Treat the double stranded segments as rigid rods of fixed length aℓ. By integrating over 
all orientations in three dimensions show that 

sinh(βFaℓ)
R(ℓ) = w ℓ × ,

βFaℓ 

where w = e−βε, and ε is the energy gain of forming the double strand. 

(c) Treat the double stranded loop as two random walks of length ℓ connected at the two 
end points. Integrating over all separations of the two end points show that

  ℓ2 2 2s 
2 β F a 

B(ℓ) = 
3 2 

g exp . 
ℓ / 12

(d) Examine the problem in a (grand canonical) ensemble with variable DNA lengths N , 
additionally weighted by a factor of zN . Give the expressions for the (Laplace) transformed 

L

∞B̃(z) and R̃(z) in this ensemble in terms of the (Bose) sums f+(x) = xℓ/ℓ m .m ℓ=1 
˜ B̃−1(e) Show that the strands become fully separated at a critical point s atisfying R = = 

( r

−1 
sζ3/2 , where ζ3/2 ≡ f

3

+ 
/2

(1) ≈ 2.612. 

(f) For s = 1, plot the phase diagram of the model in the coordinates (w/g2) and (βFa). 
***** 

3. Over-stretching DNA: In standard (B–from) DNA the basepairs stack in spiral fashion at 
separation of 3.4Å. As indicated in the following figure [from S. B. Smith, Y. Cui, C. Busta
mante, Science 271, 795 (1996), and http://alice.berkeley.edu/˜ steve/DNAstr.html], pulling 
on DNA with optical tweezers causes it to greatly stretch at forces of around 65±5pN. 

(a) One interpretation is that this represents a transition to a new structure of over-stretched 
DNA, in which the separation of bases has increased to 5.8Å. As a very simple model of this 
putative state consider DNA as a one dimensional chain in which each unit can either be in 
the regular form of size 3.4˚ A. Assume that an energy A, or in the stretched form of size 5.8˚

U is required to change the regular form to the stretched form. For this part of the problem 
ignore the three dimensional orientations of each segment, and assume that the state of each 
element is independent of its neighbors. Calculate the length L(F, T ) for this model when 
pulled by a force F at a temperature T . 

(b) Compare the result from part (a) to the experimental figure, and thus estimate the 
parameter U from the data in the above model from experiments. Is the width of the 
transition region in F consistent with the assumptions of the model. 
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(c) Now consider a more realistic model in which neighboring elements tend to be in the
same state. Would this lead to a sharpening or widening of the transition region in F ?

*****

4. Denaturing RNA by force: By pulling on the ends of RNA, the hydrogen bonds can
be broken to yield a stretched polymer. Let us model the partially denatured state as a
sequence of linear segments with no hydrogen bonds and ‘blobs’ which are hydrogen bonded
(opposite to the case of DNA). Assume that the force carrying backbone of the molecule is
made up of the linear segments, and that the RNA blobs carry no force (similar to the loop
in problem 2). After integrating over the position vectors, the (Gibbs) partition function of
an RNA of length N can be written as

Z(N, F ) =
∑

P (ℓ1)R(ℓ2)P (ℓ3) · · · , with ℓ1 + ℓ2 + ℓ3 + · · · = N.
ℓ1,ℓ2,ℓ3,···

The contributions of linear and blob segments are respectively

P (ℓ) = gℓ F 2a2ℓ A
exp

(

,
6k2

BT 2

)

and R(ℓ) = f ℓ

ℓ3/2
.

(a) Exploit the mathematical similarity to the Poland–Scheraga model to evaluate the grand
partition function of the model.

(b) Identify the force Fc at which denaturation starts.

(c) Sketch the fraction of denatured sites as a function of force, clearly indicating the nature
of the singularity at Fc.

*****
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5. (Optional) Pulling RNA: The server on http://bioinfo.ucsd.edu/rna/ (or the pulling 
server at http://bioserv.mps.ohio-state.edu/rna/) gives force extension curves for RNA based 
on secondary structure calculations. Use this server to examine force extension curves for: 
(a) a uniform sequence; (b) an alternating sequence of G and C; (c) an alternating sequence 
of A and U; (d) an actual RNA sequence. (Choose sequences of roughly the same length.) 
Comment on the general characteristics of these curves. Does any of them resemble the 
theoretical result from the previous problem? 

***** 
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