VII Biological Oscillators

During class we consider the following two coupled differential equations:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

[VII.1]

From the phase plane analysis (see L9_notes.pdf) it was clear that for certain values of a and b this system exhibits periodic oscillations as a function of time. Let us analyze [VII.1] in more detail. The nullclines are:

$$
\begin{aligned}
& y=\frac{x}{a+x^{2}} \\
& y=\frac{b}{a+x^{2}}
\end{aligned}
$$

[VII.2]

There is only one fixed point $\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$:

$$
\begin{align*}
& x^{*}=b \\
& y^{*}=\frac{b}{a+b^{2}} \tag{VII.3}
\end{align*}
$$

The matrix A is (using [V.4] and [V.5]):

$$
A=\left[\begin{array}{cc}
-1+2 x^{*} y^{*} & a+\left(x^{*}\right)^{2} \\
-2 x^{*} y^{*} & -\left(a+\left(x^{*}\right)^{2}\right)
\end{array}\right]
$$

[VII.4]

The determinant and trace are:

$$
\begin{align*}
& \Delta=a+b^{2}>0 \\
& \tau=-\frac{b^{4}+(2 a-1) b^{2}+\left(a+a^{2}\right)}{a+b^{2}} \tag{VII.5}
\end{align*}
$$

The fixed point is stable when $\tau<0$. The region in a-b-parameter space where the system is oscillating (stable limit cycle) and is not oscillating (stable fixed point) is illustrated in Fig. 10.

Figure 11. a-b-parameter space indicating for which values of a and b the system exhibits stable oscillations and a stable fixed point

MATLAB code 5: Limit cycle

```
% filename: cyclefunc.m
function dydt = f(t,y,flag,a,b)
dydt = [-y(1)+a*y(2)+y(1)*y(1)*y(2);
    b-a*y(2)-y(1)*y(1)*y(2)];
plot(y(1),y(2),'.');
drawnow;
hold on;
axis([0 2 0 2]);
```

```
% filename: limitcycle.m
close;
clear;
a=0.1;
b=0.5;
options=[];
[t y]=ode23('cyclefunc',[0 50],[0.6 1.4],options,a,b);
plot(y(:,1),y(:,2));
```

