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8.333: Statistical Mechanics I Fall 2007 Test 1


Review Problems 

The first in-class test will take place on Wednesday 9/26/07 from 

2:30 to 4:00 pm. There will be a recitation with test review on Friday 9/21/07. 

The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The test will be composed entirely from a subset of the following problems. Thus if you 

are familiar and comfortable with these problems, there will be no surprises! 

********


You may find the following information helpful:


Physical Constants 

Electron mass me ≈ 9.1 × 10−31kg Proton mass mp ≈ 1.7 × 10−27kg 

Electron Charge e ≈ 1.6 × 10−19C Planck’s const./2π h̄ ≈ 1.1 × 10−34Js−1 

Speed of light c ≈ 3.0 × 108ms−1 Stefan’s const. σ ≈ 5.7 × 10−8Wm−2K−4 

Boltzmann’s const. kB ≈ 1.4 × 10−23JK−1 Avogadro’s number N0 ≈ 6.0 × 1023mol−1 

Conversion Factors 

A ≡ 10−101atm ≡ 1.0 × 105Nm−2 1˚ m 1eV ≡ 1.1 × 104K 

Thermodynamics 

dE = dW For a gas: ¯ = −PdV For a wire: dW = Jdx TdS+¯ dW ¯

Mathematical Formulas 
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1. Surface tension: Thermodynamic properties of the interface between two phases are 

described by a state function called the surface tension S. It is defined in terms of the 

work required to increase the surface area by an amount dA through dW ¯ = SdA. 

(a) By considering the work done against surface tension in an infinitesimal change in 

radius, show that the pressure inside a spherical drop of water of radius R is larger than 

outside pressure by 2S/R. What is the air pressure inside a soap bubble of radius R? 

• The work done by a water droplet on the outside world, needed to increase the radius 

from R to R + ΔR is 

ΔW = (P − Po) 4πR2 ΔR, · · 

where P is the pressure inside the drop and Po is the atmospheric pressure. In equilibrium, 

this should be equal to the increase in the surface energy SΔA = S · 8πR · ΔR, where S 
is the surface tension, and 

ΔWtotal = 0, = ⇒ ΔWpressure = −ΔWsurface , 

resulting in 

(P − Po) · 4πR2 · ΔR = S · 8πR · ΔR, = ⇒ (P − Po) =
2

R 

S
. 

In a soap bubble, there are two air-soap surfaces with almost equal radii of curvatures, 

and 

Pfilm − Po = Pinterior − Pfilm =
2S

,
R 

leading to 

Pinterior − Po =
4S

. 
R 

Hence, the air pressure inside the bubble is larger than atmospheric pressure by 4S/R. 

(b) A water droplet condenses on a solid surface. There are three surface tensions involved 

Saw, Ssw, and Ssa, where a, s, and w refer to air, solid and water respectively. Calculate 

the angle of contact, and find the condition for the appearance of a water film (complete 

wetting). 

• When steam condenses on a solid surface, water either forms a droplet, or spreads on 

the surface. There are two ways to consider this problem: 

Method 1: Energy associated with the interfaces 

In equilibrium, the total energy associated with the three interfaces should be mini

mum, and therefore 

dE = SawdAaw + SasdAas + SwsdAws = 0. 
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Since the total surface area of the solid is constant, 

dAas + dAws = 0. 

From geometrical considerations (see proof below), we obtain 

dAws cos θ = dAaw. 

From these equations, we obtain 

dE = (Saw cos θ − Sas + Sws) dAws = 0, = cos θ = 
Sas − Sws 

.⇒ 
Saw 

Proof of dAws cos θ = dAaw: Consider a droplet which is part of a sphere of radius R, 

which is cut by the substrate at an angle θ. The areas of the involved surfaces are 

Aws = π(R sin θ)2 , and Aaw = 2πR2(1 − cos θ). 

Let us consider a small change in shape, accompanied by changes in R and θ. These 

variations should preserve the volume of water, i.e. constrained by 

πR3 
( ) 

V = cos 3 θ − 3 cos θ + 2 . 
3 

Introducing x = cos θ, we can re-write the above results as 

 ( 
2
) 

 Aws = πR2 x , 
 1 −
 
 

Aaw = 2πR2 (1 − x) , 
 
 πR3 

( ) 
 3 
 V = x − 3x + 2 . 

3 

The variations of these quantities are then obtained from 



 
 
 dAws = 2πR 

dR 
(1 − x 2) − Rx dx, 

 dx
 
 
 [ ] 
 dR 

dAaw = 2πR 2 (1 − x) − R dx, 
 dx
 
 
 
 
 dR 3 2 


 dV = πR2 

dx
(x − 3x + 2) + R(x − x) dx = 0. 

From the last equation, we conclude 

1 dR x2 x x + 1 
3R dx 

= −
x − 3

−
x + 2 

= −
(x − 1)(x + 2) 

. 
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Substituting for dR/dx gives, 

dAws = 2πR2 dx 

x + 2
, and dAaw = 2πR2 x · dx 

x + 2
, 

resulting in the required result of 

dAaw = x dAws = dAws cos θ. · 

Method 2: Balancing forces on the contact line 

Another way to interpret the result is to consider the force balance of the equilibrium 

surface tension on the contact line. There are four forces acting on the line: (1) the surface 

tension at the water–gas interface, (2) the surface tension at the solid–water interface, (3) 

the surface tension at the gas–solid interface, and (4) the force downward by solid–contact 

line interaction. The last force ensures that the contact line stays on the solid surface, and 

is downward since the contact line is allowed to move only horizontally without friction. 

These forces should cancel along both the y–direction x–directions. The latter gives the 

condition for the contact angle known as Young’s equation, 

Sas = Saw cos θ + Sws , = cos θ = 
Sas − Sws 

.· ⇒ Saw 

The critical condition for the complete wetting occurs when θ = 0, or cos θ = 1, i.e. for 

cos θC = 
Sas − Sws 

= 1. Saw 

Complete wetting of the substrate thus occurs whenever 

Saw ≤ Sas − Sws. 

(c) In the realm of “large” bodies gravity is the dominant force, while at “small” distances 

surface tension effects are all important. At room temperature, the surface tension of 

water is So ≈ 7×10−2Nm−1 . Estimate the typical length-scale that separates “large” and 

“small” behaviors. Give a couple of examples for where this length-scale is important. 

• Typical length scales at which the surface tension effects become significant are given 

by the condition that the forces exerted by surface tension and relevant pressures become 

comparable, or by the condition that the surface energy is comparable to the other energy 

changes of interest. 

Example 1: Size of water drops not much deformed on a non-wetting surface. This is given 

by equalizing the surface energy and the gravitational energy, 

S 4πR2 ≈ mgR = ρV gR =
4π

R4 g, · 
3
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√ √ 

leading to


R ≈ 3S 3 · 7 × 10−2N/m × 10−3 m = 1.5mm. 
ρg 

≈ 
103kg/m3 × 10m/s2 

≈ 1.5

Example 2: Swelling of spherical gels in a saturated vapor: Osmotic pressure of the gel 

(about 1 atm) = surface tension of water, gives 

N 2S 
πgel ≈ kBT ≈ ,

V R 

where N is the number of counter ions within the gel. Thus, 

R ≈ 
( 

2 × 7 × 10−2N/m 
) 

≈ 10−6 m. 
105N/m2 

******** 

2. Surfactants: Surfactant molecules such as those in soap or shampoo prefer to spread 

on the air-water surface rather than dissolve in water. To see this, float a hair on the 

surface of water and gently touch the water in its vicinity with a piece of soap. (This is 

also why a piece of soap can power a toy paper boat.) 

(a) The air-water surface tension So (assumed to be temperature independent) is reduced 

roughly by NkBT/A, where N is the number of surfactant particles, and A is the area. 

Explain this result qualitatively. 

• Typical surfactant molecules have a hydrophilic head and a hydrophobic tail, and prefer 

to go to the interface between water and air, or water and oil. Some examples are, 

CH3 − (CH2)11 − SO− Na+ ,3 · 

CH3 − (CH2)11 − N+(CH3)3 Cl−,· 

CH3 − (CH2)11 − O − (CH2 − CH2 − O)12 − H. 

The surfactant molecules spread over the surface of water and behave as a two dimensional 

gas. The gas has a pressure proportional to the density and the absolute temperature, 

which comes from the two dimensional degrees of freedom of the molecules. Thus the 

surfactants lower the free energy of the surface when the surface area is increased. 

N N 
ΔFsurfactant = 

A
kBT · ΔA = (S − So) · ΔA, = ⇒ S = So −

A
kBT. 

(Note that surface tension is defined with a sign opposite to that of hydrostatic pressure.)
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∣ 

∣ 

∣ 
∣ 

(b) Place a drop of water on a clean surface. Observe what happens to the air-water

surface contact angle as you gently touch the droplet surface with a small piece of soap, 

and explain the observation. 

• As shown in the previous problem, the contact angle satisfies 

Sas − Sws 
cos θ = . Saw 

Touching the surface of the droplet with a small piece of soap reduces Saw, hence cos θ 

increases, or equivalently, the angle θ decreases. 

(c) More careful observations show that at higher surfactant densities 

∣	 ( )2 ∣ 
∂S
∣

∣ NkBT 2a N ∂T	
∣

∣ A − Nb 

∂A ∣ T 

=
(A − Nb)2 

−
A A 

, and 
∂S A 

= − 
NkB 

; 

where a and b are constants. Obtain the expression for S(A, T ) and explain qualitatively 

the origin of the corrections described by a and b. 

• When the surfactant molecules are dense their interaction becomes important, resulting 

in 
∣	 ( )2

∂S	 ∣
∣ = 

NkBT 2a N 
,

∂A (A − Nb)2 
−

A AT 

and 
∣ 

∂T ∣ 
= 

A − Nb 
. 

∂S A 

− 
NkB 

Integrating the first equation, gives 

( )2
NkBT N S(A, t) = f(T ) −
A − Nb 

+ a
A 

, 

where f(T ) is a function of only T , while integrating the second equation, yields 

NkBT S(A, T ) = g(A) −
A − Nb

, 

with g(A) a function of only A. By comparing these two equations we get 

( )2
NkBT N S(A, T ) = So −
A − Nb 

+ a
A 

, 

where So represents the surface tension in the absence of surfactants and is independent 

of A and T . The equation resembles the van der Waals equation of state for gas-liquid 

systems. The factor Nb in the second term represents the excluded volume effect due to 

the finite size of the surfactant molecules. The last term represents the binary interaction 
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∣ ∣ ∣ ∣ 
∣ 

∣ 

∣ ∣ 
∣ ∣ 

∣ 
∣ ∣ 

∣ ∣ 
∣ ∣ 

∣ ∣ ∣ ∣ 
∣ ∣ 

( ∣ ) ∣ 
∣ ∣ 

∣ ∣ ∣ 

( ∣ ) 

∣ 

between two surfactant molecules. If surfactant molecules attract each other the coefficient 

a is positive the surface tension increases. 

(d)
∣ 
Find an expression for CS − CA in terms of ∂E 

∂A 
∣ 
T
, S, ∂

∂A 
S ∣
∣ 
T 
, and 

∂

∂T 

S 
∣

∣ 
A 
, for ∂E 

∂T A 
= 

∂E 
∂T . S 
• Taking A and T as independent variables, we obtain 

∂E ∣ ∂E ∣ 
δQ = dE − S · dA, = ⇒ δQ = 

∂A ∣ T 

dA + 
∂T ∣ A 

dT − S · dA, 

and 
( ∣ ) ∣ 

∂E ∣ ∂E ∣ 
δQ = 

∂A T 

− S dA + 
∂T 
∣ 
A 

dT. 

From the above result, the heat capacities are obtained as 

 
δQ ∣ ∂E ∣ 

 =  
 CA ≡ 

δT ∣ ∂T ∣ A A 
∣ ( ∣ ) ∣ ∣ , 

 δQ ∣ ∂E ∣ ∂A ∣ ∂E ∣ 
 
 C = +S ≡ 

δT ∂A ∣ T 

− S 
∂T ∂T ∣ S S S 

resulting in 
∂E ∣ ∂A ∣ 

C = .S − CA 
∂A ∣ T 

− S 
∂T ∣ S 

Using the chain rule relation 

∂T ∣ ∣ ∂A ∣ 
∣ ∂S

∣ ∣ = 
∂S ∣ A 

· 
∂A ∣ T 

· 
∂T ∣ S 

−1, 

we obtain 
  

∂E ∣ 
C = 

∣ ∣
 .S − CA 

∂A ∣
∣ 
T 

− S · 
∂T ∣ 

−1 

∂S ∣ 
∂S ∣ A 

· ∂A 
T 

******** 

3. Temperature scales: Prove the equivalence of the ideal gas temperature scale Θ, and 

the thermodynamic scale T , by performing a Carnot cycle on an ideal gas. The ideal gas 

satisfies PV = NkBΘ, and its internal energy E is a function of Θ only. However, you 

may not assume that E ∝ Θ. You may wish to proceed as follows: 

(a) Calculate the heat exchanges QH and QC as a function of ΘH , ΘC , and the volume 

expansion factors. 

• The ideal gas temperature is defined through the equation of state 

PV 
θ = . 

NkB 
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( ) 

( ) 

The thermodynamic temperature is defined for a reversible Carnot cycle by 

Thot Qhot 
= . 

Tcold Qcold 

For an ideal gas, the internal energy is a function only of θ, i.e. E = E(θ), and 

dE 
dQ = dE − dW = dθ + PdV. ¯ ¯

dθ 
· 

adiabatics (ΔQ = 0)� 

1� 

pr
es

su
re

 P
 

2� 

3� 

4� 

Q�hot� 

Q�cold� 
θ� 

θ 

isothermals 

cold� 

hot� 

volume V� 

Consider the Carnot cycle indicated in the figure. For the segment 1 to 2, which undergoes 

an isothermal expansion, we have 

NkBθhot 
dθ = 0, = ¯ = PdV, and P = .dQhot ⇒ 

V 

Hence, the heat input of the cycle is related to the expansion factor by 

∫ V2 dV V2
Qhot = NkBθhot = NkBθhot ln . 

V1 
V V1 

A similar calculation along the low temperature isotherm yields 

∫ V3 dV V3
Qcold = NkBθcold = NkBθcold ln , 

V4 
V V4 

and thus 
Qhot θhot ln (V2/V1) 

= . 
Qcold θcold ln (V3/V4) 
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( ) 

( ) 
∫ 

∣ ∣ 

(b) Calculate the volume expansion factor in an adiabatic process as a function of Θ. 

• Next, we calculate the volume expansion/compression ratios in the adiabatic processes. 

Along an adiabatic segment 

dE NkBθ dV 1 dE 
¯ = 0, = 0 = dθ + dV, = = dθ. dQ ⇒ 

dθ 
· 

V 
· ⇒ 

V 
−

NkBθ dθ 
· 

Integrating the above between the two temperatures, we obtain 

 
 V3 1 

∫ θhot 1 dE 
 
 ln = dθ, and 
 V2 

−
NkB θcold 

θ dθ 
· 

 1 θhot 1 dE 
 V4 
 
 ln = dθ. 

V1 
−

NkB θcold 
θ dθ 

· 

While we cannot explicitly evaluate the integral (since E(θ) is arbitrary), we can nonethe

less conclude that 
V1 V2 

= . 
V4 V3 

(c) Show that QH/QC = ΘH/ΘC . 

• Combining the results of parts (a) and (b), we observe that 

Qhot θhot 
= . 

Qcold θcold 

Since the thermodynamic temperature scale is defined by 

Qhot Thot 
= ,

Qcold Tcold 

we conclude that θ and T are proportional. If we further define θ(triple pointH20) = 

T (triple pointH20) = 273.16, θ and T become identical. 

******** 

4. Equations of State: The equation of state constrains the form of internal energy as 

in the following examples. 

(a) Starting from dE = TdS −PdV , show that the equation of state PV = NkBT , in fact 

implies that E can only depend on T . 

• Since there is only one form of work, we can choose any two parameters as independent 

variables. For example, selecting T and V , such that E = E(T, V ), and S = S(T, V ), we 

obtain 
∣ ∣ 

∂S ∣ ∂S ∣ 
dE = TdS − PdV = T

∂T 
∣ 
V 

dT + T
∂V 
∣ 
T 

dV − PdV, 
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∣ ∣ ∣ ∣ 
∣ ∣ 

∣ 
∣ 
∣ 

resulting in 
∂E ∣ ∂S ∣ 

∂V 
∣ 
T 

= T
∂V T 

− P. 

Using the Maxwell’s relation† 

∂S ∣ ∂P ∣ 
= ,

∂V T ∂T V 

we obtain 
∂E ∣ ∂P ∣ 
∣ = T − P. 

∂V ∂T T V 

Since T ∂P 
∣

∣ = T NkB = P , for an ideal gas, ∂E 
∣

∣ = 0. Thus E depends only on T , i.e. ∂T V V ∂V T 

E = E(T ). 

(b) What is the most general equation of state consistent with an internal energy that 

depends only on temperature? 

• If E = E(T ), 
∂E ∣ ∂P ∣ 
∣ = 0, = T ∣ = P. 

∂V T 

⇒ 
∂T V 

The solution for this equation is P = f(V )T, where f(V ) is any function of only V . 

(c) Show that for a van der Waals gas CV is a function of temperature alone. 

• The van der Waals equation of state is given by 

( )2
N 

P − a (V − Nb) = NkBT, 
V 

· 

or 
( )2

NkBT N 
P = + a . 

(V − Nb) V 

From these equations, we conclude that 

∂E ∣
∣ 

∂CV ∣
∣ 

∂2E ∂ 
{ 

∂P ∣
∣ } 

∂2P ∣
∣ 

CV ≡ 
∂T ∣ V 

, = ⇒ 
∂V T 

= 
∂V ∂T 

= 
∂T 

T
∂T ∣ V 

− P = T
∂T 2 

V 

= 0. 

******** 

5. Clausius–Clapeyron equation describes the variation of boiling point with pressure. It 

is usually derived from the condition that the chemical potentials of the gas and liquid 

phases are the same at coexistence. 

† dL = Xdx + Y dy + , = ∂X ∣ = ∂Y = ∂2L .· · · ⇒ ∂y ∣ 
x 

∂x y ∂x·∂y

10 



= ∣ ∣ . 

∣ ∣ 
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∣ ∣ 
∣ ∣ 

∣ ∣ 
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∣ 

∣ 

∣ 

∣ 

∮ 

• From the equations 

µliquid(P, T ) = µgas(P, T ), 

and 

µliquid(P + dP, T + dT ) = µgas(P + dP, T + dT ), 

we conclude that along the coexistence line 

∣ ∂µg ∣ ∂µl ∣ 
dP ∣ ∂T ∂T 
∣ P 

−
P 

dT ∣ ∂µl ∣ ∂µg ∣ 
coX 

∂P ∣ 
T 
− ∂P 

T 

The variations of the Gibbs free energy, G = Nµ(P, T ) from the extensivity condition, are 

given by 

∂G ∣ ∂G ∣ 
V = , S = . 

∂P T 

−
∂T P 

In terms of intensive quantities 

V ∂µ ∣ S ∂µ ∣ 
v = = , s = = ,

N ∂P ∣ T N 
−

∂T P 

where s and v are molar entropy and volume, respectively. Thus, the coexistence line 

satisfies the condition 
dP ∣
∣ = 

Sg − Sl 
= 

sg − sl 
. 

dT coX Vg − Vl vg − vl 

For an alternative derivation, consider a Carnot engine using one mole of water. At the 

source (P, T ) the latent heat L is supplied converting water to steam. There is a volume 

increase V associated with this process. The pressure is adiabatically decreased to P −dP . 

At the sink (P − dP, T − dT ) steam is condensed back to water. 

(a) Show that the work output of the engine is W = V dP + O(dP 2). Hence obtain the 

Clausius–Clapeyron equation 

dP ∣ L 
∣ = . (1) 

dT TV boiling 

• If we approximate the adiabatic processes as taking place at constant volume V (vertical 

lines in the P − V diagram), we find 

W = PdV = PV − (P − dP )V = V dP. 
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∣ 

Here, we have neglected the volume of liquid state, which is much smaller than that 

of the gas state. As the error is of the order of 

∂V ∣ 
∣ dP dP = O(dP 2),

∂P S 

· 

we have 

W = V dP + O(dP 2). 

The efficiency of any Carnot cycle is given by 

W TC
η = = 1 − ,

QH TH 

and in the present case, 

QH = L, W = V dP, TH = T, TC = T − dT. 

Substituting these values in the universal formula for efficiency, we obtain the Clausius-

Clapeyron equation 
∣ 

V dP dT dP ∣ L 
= , or ∣ = . 

L T dT ∣ T VcoX · 

pr
es

su
re

 

volume 

1� 2� 

4� 3� 

coldQ

hot�Q
gasliq. 

T 

T-dT 

P 

P-dP 
V 

(b) What is wrong with the following argument: “The heat QH supplied at the source to 

convert one mole of water to steam is L(T ). At the sink L(T −dT ) is supplied to condense 

one mole of steam to water. The difference dTdL/dT must equal the work W = V dP , 

equal to LdT/T from eq.(1). Hence dL/dT = L/T implying that L is proportional to T !” 
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• The statement “At the sink L(T − dT ) is supplied to condense one mole of water” is 

incorrect. In the P − V diagram shown, the state at “1” corresponds to pure water, “2” 

corresponds to pure vapor, but the states “3” and “4” have two phases coexisting. In 

going from the state 3 to 4 less than one mole of steam is converted to water. Part of the 

steam has already been converted into water during the adiabatic expansion 2 3, and →
the remaining portion is converted in the adiabatic compression 4 1. Thus the actual →
latent heat should be less than the contribution by one mole of water. 

(c) Assume that L is approximately temperature independent, and that the volume change 

is dominated by the volume of steam treated as an ideal gas, i.e. V = NkBT/P . Integrate 

equation (1) to obtain P (T ). 

• For an ideal gas 

NkBT dP ∣ LP dP L 
V = , = = , or = dT. 

P 
⇒ 

dT coX NkBT 2 P NkBT 2

Integrating this equation, the boiling temperature is obtained as a function of the pressure 

P , as 
( ) 

L 
P = C · exp − . 

kBTBoiling 

(d) A hurricane works somewhat like the engine described above. Water evaporates at the 

warm surface of the ocean, steam rises up in the atmosphere, and condenses to water at 

the higher and cooler altitudes. The Coriolis force converts the upwards suction of the 

air to spiral motion. (Using ice and boiling water, you can create a little storm in a tea 

cup.) Typical values of warm ocean surface and high altitude temperatures are 800F and 

−1200F respectively. The warm water surface layer must be at least 200 feet thick to 

provide sufficient water vapor, as the hurricane needs to condense about 90 million tons 

of water vapor per hour to maintain itself. Estimate the maximum possible efficiency, and 

power output, of such a hurricane. (The latent heat of vaporization of water is about 

2.3 × 106Jkg−1.) 

• For TC = −120oF = 189oK, and TH = 80oF = 300oK, the limiting efficiency, as that 

of a Carnot engine, is 

ηmax = 
TH − TC 

= 0.37. 
TH 

The output power, is equal to (input power) x (efficiency). The input in this case is the 

energy obtained from evaporation of warm ocean temperature; hence 

Power output = 
dW 

= 
dQc TH − TC 

dt dt 
× 

TC 

90 × 106tons 1hr 1000kg 2.3 × 106J 
= 

hr 
· 
3600sec 

· 
ton 

· 
kg 

× 0.67 ≈ 4 × 1013watts. 
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∣ ( ) 

∣ 

(e) Due to gravity, atmospheric pressure P (h) drops with the height h. By balancing 

the forces acting on a slab of air (behaving like a perfect gas) of thickness dh, show that 

P (h) = P0 exp(−mgh/kT ), where m is the average mass of a molecule in air. 

• Consider a horizontal slab of area A between heights h and h + dh. The gravitational 

force due to mass of particles in the slab is 

N P 
dFgravity = mg Adh = mg Adh, 

V kBT 

where we have used the ideal gas law to relate the density (N/V ) to the pressure. The 

gravitational force is balanced in equilibrium with the force due to pressure 

∂P ∣ 
dFpressure = A [P (h) − P (h + dh)] = −

∂h 
Adh. 

Equating the two forces gives 

∂P ∣ P mgh 

∂h 
∣ = −mg 

kBT
, = ⇒ P (h) = p0 exp −

kBT
, 

assuming that temperature does not change with height. 

(f) Use the above results to estimate the boiling temperature of water on top of Mount 

Everest (h ≈ 9km). The latent heat of vaporization of water is about 2.3 × 106Jkg−1 . 

• Using the results from parts (c) and (e), we conclude that 

( ) [ ( )] 
PEverest mg L 1 1 

Psea 
≈ exp −

kBT 
(hEverest − hsea) ≈ exp −

kB TEverest(boil)
−

Tsea(boil) 
. 

Using the numbers provided, we find TEverest(boil) ≈ 346oK (74oC≈ 163oF). 

******** 

6. Glass: Liquid quartz, if cooled slowly, crystallizes at a temperature Tm, and releases 

latent heat L. Under more rapid cooling conditions, the liquid is supercooled and becomes 

glassy. 

(a) As both phases of quartz are almost incompressible, there is no work input, and changes 

in internal energy satisfy dE = TdS + µdN . Use the extensivity condition to obtain the 

expression for µ in terms of E, T , S, and N . 

• Since in the present context we are considering only chemical work, we can regard 

entropy as a function of two independent variables, e.g. E, and N , which appear naturally 

from dS = dE/T − µdN/T . Since entropy is an extensive variable, λS = S(λE, λN). 

14




∣ ∣ 

∣ ∣ 
∣ 

{ 

( ) ( ) 

Differentiating this with respect to λ and evaluating the resulting expression at λ = 1, 

gives 
∂S ∣ ∂S ∣ E Nµ 

S(E, N) = ∣ E + N = ,
∂E ∂N T 

− 
TN E 

leading to 
E − TS 

µ = . 
N 

(b) The heat capacity of crystalline quartz is approximately CX = αT 3, while that of 

glassy quartz is roughly CG = βT , where α and β are constants. 

Assuming that the third law of thermodynamics applies to both crystalline and glass 

phases, calculate the entropies of the two phases at temperatures T ≤ Tm. 

• Finite temperature entropies can be obtained by integrating ¯ =dQ/T , starting from S(T 

0) = 0. Using the heat capacities to obtain the heat inputs, we find 

 
T dScrystal NαT 3 

 
 Ccrystal = αT 3 = 

N dT 
, = ⇒ Scrystal =

3 
, 

 T 
 = βT = 

dSglass 
, = = βNT. Cglass 

N dT 
⇒ Sglass 

(c) At zero temperature the local bonding structure is similar in glass and crystalline 

quartz, so that they have approximately the same internal energy E0. Calculate the 

internal energies of both phases at temperatures T ≤ Tm. 

• Since dE = TdS + µdN , for dN = 0, we have 

dE = TdS = αNT 3dT (crystal), 

dE = TdS = βNTdT (glass). 

Integrating these expressions, starting with the same internal energy Eo at T = 0, yields 

 
 αN 

T 4 
 E = Eo + (crystal),

4 
 βN 
 E = Eo + T 2 (glass). 

2 

(d) Use the condition of thermal equilibrium between two phases to compute the equilib

rium melting temperature Tm in terms of α and β. 

• From the condition of chemical equilibrium between the two phases, µcrystal = µglass, 

we obtain 
1 1 1 αT 4 βT 2 

3 
−

4 
· αT 4 = 1 −

2 
· βT 2 , = ⇒ 

12 
=

2 
, 
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√ 

( ) 

( ) 

∣ 
∣ 

∑ 

resulting in a transition temperature


6β 
Tmelt = . 

α 

(e) Compute the latent heat L in terms of α and β. 

• From the assumptions of the previous parts, we obtain the latent heats for the glass to 

crystal transition as 

αT 3 

L = Tmelt (Sglass − Scrystal) = NTmelt βTmelt − melt 

3 

αT 2 

= NT 2 melt = NT 2 = −NβT 2 
melt β − melt(β − 2β) melt < 0. 

3 

(f) Is the result in the previous part correct? If not, which of the steps leading to it is 

most likely to be incorrect? 

• The above result implies that the entropy of the crystal phase is larger than that of 

the glass phase. This is clearly unphysical, and one of the assumptions must be wrong. 

The questionable step is the assumption that the glass phase is subject to the third law 

of thermodynamics, and has zero entropy at T = 0. In fact, glass is a non-ergodic state of 

matter which does not have a unique ground state, and violates the third law. 

******** 

7. Characteristic functions: Calculate the characteristic function, the mean, and the 

variance of the following probability density functions:


(a) Uniform p(x) = 1 for −a < x < a , and p(x) = 0 otherwise;

2a 

• A uniform probability distribution, 

 
1 

 
p(x) = 2a 

for − a < x < a 
, 

 
0 otherwise 

for which there exist many examples, gives 

1 
∫ a 1 1 

∣

∣ a 

f(k) =
2a −a 

exp(−ikx)dx =
2a −ik 

exp(−ikx) 
−a 

1 
∞

(ak)2m 

= 
ak 

sin(ka) = (−1)m 

(2m + 1)! 
. 

m=0 

Therefore,

1 

m1 = = 0, and m2 = 2 = a 2 .�x� �x �
3 
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( ) 

( ) 

∫ 

∫ 

∫ 

(b) Laplace p(x) = 1 exp − |x| ;
2a a 

• The Laplace PDF, 

p(x) =
1

exp −|x| 
,

2a a 

for example describing light absorption through a turbid medium, gives 

f(k) =
1 ∞ 

dx exp 

( 

−ikx − |x| ) 

2a	 a−∞ 

1 
∫ ∞	 1 

∫ 0 

= dx exp(−ikx − x/a) + dx exp(−ikx + x/a)
2a	 2a 
[ 0	 ] −∞ 

1 1 1 1 
=	 = 

2a −ik + 1/a
− −ik − 1/a 1 + (ak)2 

= 1 − (ak)2 + (ak)4 − · · · . 

Therefore, 

m1 = = 0, and m2 = 2 = 2a 2 .�x�	 �x �

(c) Cauchy p(x) = π(x2

a 
+a2) . 

• The Cauchy, or Lorentz PDF describes the spectrum of light scattered by diffusive 

modes, and is given by 
a 

p(x) = . 
π(x2 + a2) 

For this distribution, 

∞	 a 
f(k) = exp(−ikx)

π(x2 + a2) 
dx 

−∞ 
∫ [	 ] 

1 ∞	 1 1 
=

2πi 
exp(−ikx) 

x − ia 
−

x + ia 
dx. 

−∞ 

The easiest method for evaluating the above integrals is to close the integration contours 

in the complex plane, and evaluate the residue. The vanishing of the integrand at infinity 

determines whether the contour has to be closed in the upper, or lower half of the complex 

plane, and leads to 

	  
	  
 

1 exp(−ikx)
dx = exp(−ka) for k ≥ 0 

 −2πi C x + ia	  
f(k) =	

 1 
∫ 

exp(−ikx)  
= exp(−|ka|). 

 dx = exp(ka) for k < 0  
	  

2πi x − ia B 
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( ) 

( ) 

√ 

( ) 

∫ 

Note that f(k) is not an analytic function in this case, and hence does not have a Tay

lor expansion. The moments have to be determined by another method, e.g. by direct 

evaluation, as 
∫ 2 

m1 = = 0, and m2 = 2 = dx 
π x�x� �x �
a 
· 
x2 + a2 

→ ∞. 

The first moment vanishes by symmetry, while the second (and higher) moments diverge, 

explaining the non-analytic nature of f(k). 

The following two probability density functions are defined for x ≥ 0. Compute only 

the mean and variance for each. 
2 

(d) Rayleigh p(x) = a
x 
2 exp(−2

x
a2 ) , 

• The Rayleigh distribution, 

2x x
p(x) = 

a2 
exp −

2a2 
, for x ≥ 0, 

can be used for the length of a random walk in two dimensions. Its characteristic function 

is 
∫ ( 

2 
)∞ x x

f(k) = exp(−ikx) exp 
2a2 

dx 
0 a2 

− 
∞ x 

( 
x
) 

= 
0 

[cos(kx) − i sin(kx)] 
a

exp −
2a

dx. 

∫ 2 

2 2 

The integrals are not simple, but can be evaluated as 
∫ 2 

∑

∞ 
cos(kx) 

x 
exp 

x
dx = 

∞
(−1)nn! ( 

2a 2k2
)n 

,
2 2 

0 a
−

2a (2n)! 
n=0 

and 
∫ ( ) ∫ ( )∞ x x2 1 ∞ x x2 

0 

sin(kx) exp − dx =
2 −∞ 

sin(kx) exp − dx 
a2 2a2 a2 2a2 

π 
( 

k2a2
) 

= ka exp ,
2 

− 
2 

resulting in 
∑

√ 
k2 2 

f(k) = 

∞
(−
(2

1)

n

n

)! 

n! ( 
2a 2k2

)n − i
π 

2 
ka exp − 

2 

a
. 

n=0 

The moments can also be calculated directly, from 
∫ 2 

( ) ∫ 2 
( 

2 
)∞ x x2 ∞ x x

√ 
π 

m1 = = exp dx = exp dx = a, �x�
0 a2 

−
2a2 2a2 

−
2a2 2

∫ ( ) 
−∞ 
∫ ( ) ( ) 

2 
∞ x3 x2

2 
∞ x2 x2 x2 

m2 = �x � = 
0 a2 

exp −
2a2 

dx = 2a 
0 2a2 

exp −
2a2 

d 
2a2 

= 2a 2 
∞ 

y exp(−y)dy = 2a 2 .

0
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√ 

√ 

√ 
∫ 

√ 

√ √ 

√ 

∫ 

∫ 

∫ ∫ 

∫ ∫ 

(e) Maxwell p(x) = 2 x 2 
exp(− x 2 

) .
π a3 2a2 

It is difficult to calculate the characteristic function for the Maxwell distribution • 

2 x2 
( 

x2 
) 

p(x) = exp ,
π a3 

−
2a2 

say describing the speed of a gas particle. However, we can directly evaluate the mean and 

variance, as 

2 ∞ x3 
( 

x2 
) 

m1 = �x� = 
π 0 a3 

exp −
2a2 

dx 

2 
∫ ∞ x2 

( 
x2 
) ( 

x2 
) 

= 2 
π

a 
0 2a

exp −
2a

d 
2a2 2 2 

2 
∫ ∞ 2 

= 2 
π

a 
0 

y exp(−y)dy = 2 
π

a, 

and 
2 
∫ ∞ x4 

( 
x2 
) 

m2 = �x 2 � = 
π o a3 

exp −
2a2 

dx = 3a 2 . 

******** 

8. Tchebycheff inequality: Consider any probability density p(x) for (−∞ < x < ∞), 

with mean λ, and variance σ2 . Show that the total probability of outcomes that are more 

than nσ away from λ is less than 1/n2, i.e. 

1 
dxp(x) ≤ .

2|x−λ|≥nσ n

Hint: Start with the integral defining σ2, and break it up into parts corresponding to 

|x − λ| > nσ, and |x − λ| < nσ. 

• By definition, for a system with a PDF p(x), and average λ, the variance is 

σ2 = (x − λ)2 p(x)dx. 

Let us break the integral into two parts as 

σ2 = (x − λ)2 p(x)dx + (x − λ)2 p(x)dx, 
|x−λ|≥nσ |x−λ|<nσ 

resulting in 

σ2 − 
|x−λ|<nσ 

(x − λ)2 p(x)dx = 
|x−λ|≥nσ 

(x − λ)2 p(x)dx. 
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∫ ∫ 

∫ ∫ 

∫ 

( ) 

( ) 

( ) 

Now since


(x − λ)2 p(x)dx ≥ (nσ)2 p(x)dx, 
|x−λ|≥nσ |x−λ|≥nσ 

we obtain 

(nσ)2 p(x)dx ≤ σ2 − 
|x−λ|<nσ 

(x − λ)2 p(x)dx ≤ σ2 , 
|x−λ|≥nσ 

and 
1 

p(x)dx ≤ .
2|x−λ|≥nσ n

******** 

9. Optimal selection: In many specialized populations, there is little variability among 

the members. Is this a natural consequence of optimal selection? 

(a) Let {rα} be n random numbers, each independently chosen from a probability density 

p(r), with r ∈ [0, 1]. Calculate the probability density pn(x) for the largest value of this 

set, i.e. for x = max{r1, , rn}.· · · 
• The probability that the maximum of n random numbers falls between x and x + dx 

is equal to the probability that one outcome is in this interval, while all the others are 

smaller than x, i.e. 

n 
pn(x) = p(r1 = x, r2 < x, r3 < x, , rn < x) ,· · · × 

1 

where the second factor corresponds to the number of ways of choosing which rα = x. As 

these events are independent 

n 
pn(x) = p(r1 = x) p(r2 < x) p(r3 < x) p(rn < x)· · · · · × 

1 

= p(r = x) [p(r < x)]
n−1 n

.× 
1 

The probability of r < x is just a cumulative probability function, and 

[∫ x ]n−1 

pn(x) = n p(x) p(r)dr .· · 
0 

(b) If each rα is uniformly distributed between 0 and 1, calculate the mean and variance 

of x as a function of n, and comment on their behavior at large n. 
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∫ 1 ∫ 1 • If each rα is uniformly distributed between 0 and 1, p(r) = 1 ( 
0 

p(r)dr = 
0 

dr = 1). 

With this PDF, we find 

[
∫ x ]n−1 [

∫ x ]n−1 

pn(x) = n p(x) p(r)dr = n dr = nx n−1 ,· · 
0 0 

and the mean is now given by 

∫ 1 ∫ 1 n �x� = xpn(x)dx = n x ndx = 
n + 1 

. 
0 0 

The second moment of the maximum is 

∫ 1 
〈 

2
〉 

n+1dx 
n 

x = n x = , 
n + 20 

resulting in a variance 

( )2 

σ2 = 
〈 
x 2
〉 2 

= 
n n 

= 
n

.− �x� 
n + 2 

− 
n + 1 (n + 1)2(n + 2) 

Note that for large n the mean approaches the limiting value of unity, while the variance 

vanishes as 1/n2 . There is too little space at the top of the distribution for a wide variance. 

******** 
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