8.286 Lecture 20 November 21, 2013

SUPERNOVAE Ia

 and VACUUM ENERGY DENSITY$$
\left(\frac{\dot{a}}{a}\right)^{2}=\left(\frac{\dot{x}}{x}\right)^{2}=\frac{H_{0}^{2}}{x^{4}}\left(\Omega_{m, 0} x+\Omega_{\mathrm{rad}, 0}+\Omega_{\mathrm{vac}, 0} x^{4}+\Omega_{k, 0} x^{2}\right)
$$

$$
\Omega_{k, 0}=1-\Omega_{m, 0}-\Omega_{\mathrm{rad}, 0}-\Omega_{\mathrm{vac}, 0}
$$

Finally,

$$
t_{0}=\frac{1}{H_{0}} \int_{0}^{1} \frac{x d x}{\sqrt{\Omega_{m, 0} x+\Omega_{\mathrm{rad}, 0}+\Omega_{\mathrm{vac}, 0} x^{4}+\Omega_{k, 0} x^{2}}}
$$

Power suppressed by two factors of $\left(1+z_{S}\right)$: one for redshift of photons, one for rate of arrival of photons.

$$
J=\frac{P_{\text {received }}}{A}=\frac{P}{4 \pi\left(1+z_{S}\right)^{2} \tilde{a}^{2}\left(t_{0}\right) \sin ^{2} \psi_{D}}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.286 The Early Universe

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

