8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline

1 Main Headings

- I Introduction and relativity pre-Einstein
- II Einstein's principle of relativity and a new concept of spacetime
- III The great kinematic consequences of relativity
- IV Velocity addition and other differential transformations
- V Kinematics and "Paradoxes"
- VI Relativistic momentum and energy I: Basics
- VII Relativistic momentum and energy II: Four vectors and transformation properties
- VIII General relativity: Einstein's theory of gravity

2 More Detail

- I.0 Summary of organization
- I.1 Intuition and familiarity in physical law.
- I.2 Relativity before Einstein
 - Inertial frames
 - Galilean relativity
 - Form invariance of Newton's Laws
 - Galilean transformation
 - Non-inertial frames
 - Galilean velocity addition
 - Getting wet in the rain

- I.3 Electromagnetism, light and absolute motion.
 - Particle and wave interpretations of light
 - $\bullet\,$ Measurement of c
 - Maxwell's theory \rightarrow electromagnetic waves
 - Maxwell waves \leftrightarrow light.
- I.4 Search for the aether
 - Properties of the aether
 - Michelson-Morley experiment
 - Aether drag & stellar aberration
- I.5 Precursors of Einstein
 - Lorentz and Poincaré
 - Lorentz contraction
 - Lorentz invariance of electromagnetism
- II.1 Principles of relativity
 - Postulates
 - Resolution of Michelson-Morley experiment
 - Need for a transformation of time.
- II.2 Intertial systems, clock and meter sticks, reconsidered.
 - Setting up a frame
 - Synchronization
 - Infinite family of inertial frames
- II.3 Lorentz transformation
 - The need for a transformation between inertial frames
 - Derivation of the Lorentz transformation
- II.4 Immediate consequences
 - Relativity of simultaneity
 - Spacetime, world lines, events
 - Lorentz transformation of events
- II.5 Algebra of Lorentz transformations
 - β , γ , and the rapidity, η .
 - Analogy to rotations

- Inverse Lorentz transformation.
- III.1 Length contraction
 - Proper length
 - Careful measurements of length \rightarrow length contraction
 - Is length contraction real?
- III.2 Time dilation
 - Proper time
 - Careful measurements of duration \rightarrow time dilation
 - Is time dilation real?

III.3 Examples

- Time dilation as a measured phenomenon
- Duality between length contraction and time dilation

III.4 Intervals, causality, etc.

- Invariance of the interval under Lorentz transformation
- Spacelike, timelike, and lightlike intervals
- Causality: the Future, the Past, and Elsewhere
- Minkowski space and coordinate systems
- IV.1 Differential form of the Lorentz transformation

IV.2 Addition of velocities

- The transformation: parallel and perpendicular
- Examples: relative velocities
- IV.3 Transformation of angles
 - Static angles: transforming geometry
 - Dynamical angles: transforming rectilinear motion
 - Relativistic aberration

IV.4 The Doppler Effect

- Frequencies
- Longitudinal Doppler effect
- Transverse Doppler effect
- Doppler effect for arbitrary motion
- Comparison with non-relativistic Doppler effect

IV.5 Visual appearance of objects at relativistic velocities.

V.1 The pole vaulter and the failure of rigidity

- Naive analysis
- Careful analysis of events
- Rigidity inconsistent with relativity
- V.2 The log and the hole in the ice
- V.3 Acceleration in special relativity
 - The meaning of acceleration in the context of special relativity
 - Lorentz transformation of acceleration
 - Proper acceleration
 - "Hyperbolic" motion
 - Time in an accelerating frame
- V.4 The ice boat paradox
- $\rm V.5~The~twin~paradox$
 - The twin at rest
 - The twin in motion
 - The result and the experimental verification with accelerated particles.
 - The confusion
 - The resolution
- VI.1 Constructing relativistic momentum and energy
 - Derivation from "physical construction"
 - Rest mass
 - Reality of the rest energy
 - Examples of mass \Leftrightarrow energy.

 - Massless particles
 - Pressure of light

VI.2 Relativistic decays and collisions

- $A \rightarrow 2B$ in A rest frame
- Photon emission and absorption

- Doppler shift and Mössbauer effect
- Compton scattering
- VII.1 Properties of objects under Lorentz transformation
 - Invariants and things that change
 - The instantaneous rest frame
 - The proper time as a Lorentz invariant
 - Four-vectors
 - Definition through transformation properties
 - The four-vector as a vector in Minkowski space
- VII.2 Another four-vector: the four velocity
- VII.3 The Lorentz transformation of energy and momentum
 - E and \vec{p} form a four-vector
 - Examples: boosting a particle at rest; boosting from the center of mass to the lab
- VII.4 The invariant scalar product
 - Invariance of the interval as a property of four-vectors
 - $E^2 p^2 c^2 = m^2 c^4$ again
 - Invariance of $p_a \cdot p_b$
- VII.5 Using invariants to simplify kinematic calculations
 - Compton scattering
 - $p\bar{p}$ threshold in pp scattering
 - $Kp \rightarrow \pi \Lambda$
 - Generalities
- VIII.1 Incompleteness of special relativity
 - Non-inertial reference frames
- VIII.2 The Equivalence Principle
 - Experimental evidence for equality of gravitational and inertial mass
 - Acceleration \Leftrightarrow gravitational fields
 - General principle of relativity
- VIII.3 Consequences of the Equivalence Principle
 - Gravitational red shift
 - Gravitational time delay
- VIII.4 Mach's Principle and looking forward to General Relativity