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PROBLEM 1: THE MAGNETIC FIELD OF A SPINNING, UNIFORMLY
CHARGED SPHERE (25 points)

This problem is based on Problem 1 of Problem Set 8.

A uniformly charged solid sphere of radius R carries a total charge Q, and is set
spinning with angular velocity ω about the z axis.

(a) (10 points) What is the magnetic dipole moment of the sphere?

(b) (5 points) Using the dipole approximation, what is the vector potential �A(�r ) at large
distances? (Remember that �A is a vector, so it is not enough to merely specify its
magnitude.)

(c) (10 points) Find the exact vector potential INSIDE the sphere. You may, if you wish,
make use of the result of Example 5.11 from Griffiths’ book. There he considered a
spherical shell, of radius R, carrying a uniform surface charge σ, spinning at angular
velocity ω� directed along the z axis. He found the vector potential

 µ0Rωσ r sin θ φ ,ˆ (if r
� 3

≤ R)
A(r, θ, φ) =


 µ 0R

4 (1.1)
ωσ sin θ

φ ,ˆ (if r
3 2

≥ R) .
r

PROBLEM 1 SOLUTION:

(a) A uniformly charged solid sphere of radius R carries a total charge Q, hence it has
charge density ρ = Q/( 4πR3

3
). To find the magnetic moment of sphere we can divide

the sphere into infinitesimal charges. Using spherical polar coordinates, we can take
dq = ρ dτ = ρ r2 dr sin θ dθ dφ, with the contribution to the dipole moment given by
d�m = 1�r2 × �J dτ . One method would be to write down the volume integral directly,
using �J = ρ�v = ρ�ω×�r. We can, however, integrate over φ before we start, so we are
breaking the sphere into rings, where a given ring is indicated by its coordinates r
and θ, and its size dr and dθ. The volume of each ring is dτ = 2πr2 dr sin θ dθ. The
current dI in the ring is given by dq/T , where T = 2π/ω is the period, so

dq ωρdτ
dI = = = ωρr2 dr sin θ dθ . (1.2)

T 2π



8.07 QUIZ 2 SOLUTIONS, FALL 2012 p. 2

The magnetic dipole moment of each ring is then given by

1
dm� ring =

∫
1��r × J dτ = dI

∫
�r × �d� = dI(πr2 sin2 θ) ẑ . (1.3)

2 ring 2 ring

The total magnetic dipole moment is then

m� =
∫
ωρr2 sin θ (πr2 sin2 θ) dr dθ ẑ

= πωρ

∫ R π

r4 dr
0

∫
(1

0

− cos2 θ) sin θ dθ ẑ

Q R5 4 1
= πω 4 = QωR2 z .ˆ (1.4)

πR3 5 3 5
3

(b) The vector potential in dipole approximation is,

µ0 m� × �r µ0 |m� si�A = =
4π r3

| n θ
φ̂

µ
= 0 QωR

2 sin θ
φ .ˆ (1.5)

4π r2 4π 5 r2

(c) To calculate the exact vector potential inside the sphere, we split the sphere into
shells. Let r′ be the integration variable and the radius of a shell, moreover let
dr′ denote the thickness of the shell. Then we can use the results of Example 5.11
(pp. 236-37) in Griffiths, if we replace σ by its value for this case. The value of σ is
found equating charges

σ(4πr′2
Q

) = 4 (4πr′2)dr′ (1.6)
πR3

3

and therefore we must replace

Q
σ → dr .4

′
πR3

3

Making this replacement in Griffiths’ Eq. (5.67), quoted above as Eq. (1.1), we now
have

r′r if r < r′
Q µ

dAφ(r, θ, φ) =
0ω

dr θ 4
4

′ sin
πR3 3

3


r′ (1.7)

if r > r
r2

′ .

Note that the R of Griffiths has been replaced


by r′, which is the radius of the

integration shell. Now we can calculate the vector potential inside the sphere at
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some radius r < R. The integration will require two pieces, a piece where 0 < r′ < r
and the other where r < r′ < R, thus using the two options in Eq. (1.7):

µ Qω r ′4
Aφ(

0 r R

r, θ, φ) = sin θ dr′ + dr′rr′ . (1.8)
4π R3

[∫
r20

∫
r

]

Doing the integrals one finds

µ0 Qω
[ 3r3 rR2

Aφ(r, θ, φ) = sin θ
4π R3

− +
10 2

]
. (1.9)

PROBLEM 2: SPHERE WITH VARIABLE DIELECTRIC CONSTANT (35
points)

A dielectric sphere of radius R has variable permittivity, so the permittivity throughout
space is described by

ε r)20(R/ if r < R
ε(r) =

{
(2.1)

ε0 , if r > R .

There are no free charges anywhere in this problem. The sphere is embedded in a constant
external electric field �E = E0ẑ, which means that V (�r ) ≡ −E0r cos θ for r � R.

(a) (9 points) Show that V (�r ) obeys the differential equation

d ln ε ∂V∇2V + = 0 . (2.2)
dr ∂r

(b) (4 points) Explain why the solution can be written as

∞
V (r, θ) =

∑
V�(r) ẑi1 . . . ẑi� r̂i1 . . . r̂i� , (2.3a)

�=0

{ }

or equivalently (your choice)

∞
V (r, θ) =

∑
V�(r)P�(cos θ) , (2.3b)

�=0

where { . . .} denotes the traceless symmetric part of . . . , and P�(cos θ) is the Leg-
endre polynomial. (Your answer here should depend only on general mathematical
principles, and should not rely on the explicit solution that you will find in parts (c)
and (d).)
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(c) (9 points) Derive the ordinary differential equation obeyed by V�(r) (separately for
r < R and r > R) and give its two independent solutions in each region. Hint: they
are powers of r. You may want to know that

d
dθ

(
dP

sin �(cos θ)
θ

dθ

)
= −�(�+ 1) sin θP�(cos θ) . (2.4)

The relevant formulas for the traceless symmetric tensor formalism are in the formula
sheets.

(d) (9 points) Using appropriate boundary conditions on V (r, θ) at r = 0, r = R, and
r → ∞, determine V (r, θ) for r < R and r > R.

(e) (4 points) What is the net dipole moment of the polarized sphere?

PROBLEM 2 SOLUTION:

(a) Since we don’t have free charges anywhere,

∇ ·� �D = ∇ ·� ( �εE),

= �E · (∇� ε) + �ε∇ · �E = 0 . (2.5)

dε
The permittivity only depends on r, so we can write ∇� ε = êr. Then putting this

dr
result into Eq. (2.5) with �E = −∇� V , we find

dε
0 = (∇� V ) · êr + ε

dr
∇2V

∂V dε 1
= +∇2V

∂r dr ε

∂V d ln ε
=⇒ 0 = +

∂r dr
∇2V . (2.6)

(b) With an external field along the z-axis, the problem has azimuthal symmetry, imply-
ing ∂V/∂φ = 0, so V = V (r, θ). The Legendre polynomials P�(cos θ) are a complete
set of functions of the polar angle θ for 0 ≤ θ ≤ π, implying that at each value of
r, V (r, θ) can be expanded in a Legendre series. In general, the coefficients may be
functions of r, so we can write

∞
V (r, θ) =

∑
V�(r)P�(cos θ) . (2.7)

�=0
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The same argument holds for an expansion in { ẑi1 . . . ẑi� } r̂i1 . . . r̂i� , since these are
in fact the same functions, up to a multiplicative constant. Note that if ε depended
on θ as well as r, then the completeness argument would still be valid, and it would
still be possible to write V (r, θ) as in Eqs. (2.3). In that case, however, the equations
for the functions V�(r) would become coupled to each other, making them much more
difficult to solve.

d ln ε 2
(c) For r < R we have = − . Using the hint, Eq. (2.4) in the problem statement,

dr r
we write

2 ∂V d ln ε ∞∑ [
1 ∂ 2 ∂V� dV� 2 �(�+ 1)∇ V + = P θ r +

∂r d �(cos ) V� = 0 .
r r2 ∂r

(
∂r

)
dr

−
r

�

)
−

r2
=0

( ]
(2.8)

For this equation to hold for all r < R and for all θ, the term inside the square
brackets should be zero. (To show this, one would multiply by P�′(cos θ) sin θ and
then integrate from θ = 0 to θ = 2π. By the orthonormality of the Legendre
polynomials, only the �′ = � term would survive, so it would have to vanish for every
�′.) Thus,

1 ∂
(

V 2 �
r2
∂V�

)
d (�+ 1) d2V �(�+ 1)

+ � �
V (2.9)

∂r ∂r d � =
r

(
− V� = 0 .

r2 r

)
−

r2 dr2
−

r2

The general solution to Eq. (2.9) is

V (r) = A r�+1 B
� � + �

. (2.10)
r�

(This can be verified by inspection, but it can also be found by assuming a trial
function in the form of a power, V� ∝ rp. Inserting the trial function into the
differential equation, one finds p(p−1) = �(�+1) . One might see by inspection that
this is solved by p = � + 1 or p = −�, or one can solve it as a quadratic equation,
finding

1
p =

± (2�+ 1)
= �+ 1 or

2
− � .)

For r > R,
1 ∂ ( + 1)
r2 ∂r

The general solution to Eq. (2.11)

( ∂V
r2

�

∂r

) � �− V� = 0. (2.11)
r2

is,

D�
V ( ) = �
� r C�r + . (2.12)

r�+1



8.07 QUIZ 2 SOLUTIONS, FALL 2012 p. 6

(d) The coefficients B� are zero, B� = 0, to avoid a singularity at r = 0. The potential
goes as V (�r) = −E0r cos θ for r � R; this gives C� = 0 except for C1 = E0. The
potential V (r, θ) is continuous at r = R, implying that

−

 +1A�R
� D

= � for � = 1
R�+1

(2.13)
D1

A1R
2 = −E0R+ for � = 1 .

R2

In addition, the norma


l component of the displacement vector is continuous on the

boundary of the sphere. Since ε is continuous at r = R, this means that Er =
−∂V/∂r is continuous, which one could also have deduced from Eq. (2.2), since any
discontinuity in ∂V/∂r would produce a δ-function in ∂2V/∂r2. Setting ∂V/∂r at
r = R− equal to its value at r = R+, we find (�+ 1)A R� D

= � −(�+ 1) � for � = 1
R�+2

(2.14) D 2A1R = −2 1

3
−E0 for � = 1 .

R

Solving Eq. (2.13) and Eq. (2.14) as two equations (for each �) for the two unknowns
A� and D�, we see that A� = D� = 0 for � = 1, and that

3E 3

A1 = − 0 E
, C1 = −E , and 0R

0 D =
4 1 . (2.15)
R 4

Then we find the potential as


3E− 0r

2 cos θ for r < R

V (r, θ) =
 4R

E0 cos θ
(
R3 (2.16)

− r fo
4r

)
r r < R .

2

(e) Eq. (2.16) tells us that for r > R, the potential is equal to that of the applied external
field, Vext = −E0r cos θ, plus a term that we attribute to the sphere:

E
Vsphere(

0R
3

r, θ) = cos θ . (2.17)
4r2

This has exactly the form of an electric dipole,

1 p� r̂
Vdip =

·
, (2.18)

4πε r20

if we identify

�p = πε0R
3E0 z .ˆ (2.19)

�

�

�
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PROBLEM 3: PAIR OF MAGNETIC DIPOLES (20 points)

Suppose there are two magnetic dipoles. One has dipole moment m� 1 = m0ẑ and
is located at �r = +1

1 a z2 ;̂ the other has dipole moment m� 2 = −m0ẑ, and is located at
�r 2 = −1a z

2
.̂

(a) (10 points) For a point on the z axis at large z, find the leading (in powers of 1/z)
behavior for the vector potential �A(0, 0, z) and the magnetic field �B(0, 0, z).

(b) (3 points) In the language of monopole (� = 0), dipole (� = 1), quadrupole (� = 2),
octupole (� = 3), etc., what type of field is produced at large distances by this
current configuration? In future parts, the answer to this question will be called a
whatapole.

(c) (3 points) We can construct an ideal whatapole — a whatapole of zero size — by
taking the limit as a→ 0, keeping m0a

n fixed, for some power n. What is the correct
value of n?

(d) (4 points) Given the formula for the current density of a dipole,

� �J 3
dip(�r ) = −m� ×∇	r δ (�r − �rd) , (3.1)

where �r d is the position of the dipole, find an expression for the current density
of the whatapole constructed in part (c). Like the above equation, it should be
expressed in terms of δ-functions and/or derivatives of δ-functions, and maybe even
higher derivatives of δ-functions.

PROBLEM 3 SOLUTION:

(a) For the vector potential, we have from the formula sheet that

µ�A(�r ) = 0 m� × r̂
, (3.2)

4π r2

which vanishes on axis, since m� = m0ẑ, and r̂ = ẑ on axis. Thus,

�A(0, 0, z) = 0 . (3.3)

This does not mean that �B = 0, however, since B depends on derivatives of �A with
respect to x and y. From the formula sheet we have

µ0 3(m� · r̂)r̂ m��Bdip(�r ) =
−

, (3.4)
4π r3

where we have dropped the δ-function because we are interested only in r = 0.
Evaluating this expression on the positive z axis, where r̂ = ẑ, we find

µ0 2m0ẑ µ�Bdip(0, 0, z) = = 0 m0ẑ
. (3.5)

4π r3 2π r3

�
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For 2 dipoles, we have

µ m�B2 dip(0, 0, z) =
0 0

[
1 1

z3 − 3

]
ˆ

2π z − 1a z + 1a2 2

µ
= 0m0

( ) ( )

2πz3

[
1 1(

1− 1 a
2 z

)3 −
]
ẑ

µ0m0 1

(
1 + 31 a

2 z

1

)
≈ ẑ

2πz3

[
(
1

−− 3 a
2 z

) (
1 + 3 a

2 z

]

µ

)
≈ 0m0

[(
3 a

(
3 a

1 +
)
− 1−

)]
ẑ

2πz3 2 z 2 z
µ≈ 0m0

[ a
3
]
ẑ

2πz3 z

3µ
= 0m0a

z .ˆ (3.6)
4πz4

(b) Since it falls off as 1/z4, it is undoubtedly a quadrupole (� = 2) . For either the �E

or �B fields, the monopole falls off as 1/r2, the dipole as 1/r3, and the quadrupole as
1/r4.

(c) We wish to take the limit as a→ 0 in such a way that the field at large z approaches
a constant, without blowing up or going to zero. From Eq. (3.6), we see that this
goal will be accomplished by keeping m0a fixed, which means n = 1 .

(d) For the two-dipole system we add together the two contributions to the current
density, using the appropriate values of �r d and m� :

�J2 dip(�r ) = −m0ẑ ×∇� 	r δ
3 �r − az 02 ˆ +m ẑ ×∇� 	r δ

3 �r − az .2 ˆ (3.7)

Rewriting,

( ) ( )

δ3(�r + a ẑ) δ3(�r a ẑ)� �J2 dip(�r ) = m0aẑ ×∇ 2 2
	r

[ − −
a

]
. (3.8)

Now we can define Q ≡ m0a, and if we take the limit a→ 0 with Q fixed, the above
expression becomes

∂�J2 dip(�r ) = Qẑ ×∇� 	r δ3(�r ) . (3.9)
∂z
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Since partial derivatives commute, this could alternatively be written as

∂�J2 dip(�r ) = Qẑ × ∇� 	r δ
3(�r ) . (3.10)

∂z

PROBLEM 4: UNIFORMLY MAGNETIZED INFINITE CYLINDER (10
points)

Consider a uniformly magnetized infinite circular cylinder, of radius R, with its axis
coinciding with the z axis. The magnetization inside the cylinder is �M =M0ẑ.

(a) (5 points) Find �H(�r ) everywhere in space.

(b) (5 points) Find �B(�r ) everywhere in space.

PROBLEM 4 SOLUTION:

(a) The magnetization inside the cylinder is �M =M0ẑ. The curl of the �H(�r) field is

∇×� �H(�r) = �Jfree = 0 , (4.1)

and the divergence is

)∇ ·� � (

(
�B(�r 1

) = ∇ ·� − � ( �H �r M �r)

)
= ∇ ·� �B −∇ ·� M = 0 . (4.2)

µ0 µ0

Note that for a finite length cylinder, the divergence would be nonzero because of the
abrupt change in �M at the boundaries. Since �H(�r ) is divergenceless and curl-free,
we can say

�H(�r ) = 0 everywhere in space. (4.3)

(b) Having �H(�r ) = 0 everywhere in space, we can find magnetic field as

�B(�r ) µ M ẑ for r < R ,� ( ) = � ( ��r B( 0 0
H M �r ) = 0 = �r ) = (4.4)

µ0
− ⇒

{
0 for r > R .

In this question we could alternatively find the bound currents as �Jb = � �M = 0 and
� �

∇×
Kb = M × n̂ = M ˆ

0φ. Then, using Ampère’s law as we did for a solenoid, we could find
the magnetic field and then also �H, obtaining the same answers as above.
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PROBLEM 5: ELECTRIC AND MAGNETIC UNIFORMLY POLARIZED
SPHERES (10 points)

Compare the electric field of a uniformly polarized sphere with the magnetic field of
a uniformly magnetized sphere; in each case the dipole moment per unit volume points
along ẑ. Multiple choice: which of the following is true?

(a) The �E and �B field lines point in the same direction both inside and outside the
spheres.

(b) The �E and �B field lines point in the same direction inside the spheres but in opposite
directions outside.

(c) The �E and �B field lines point in opposite directions inside the spheres but in the
same direction outside.

(d) The �E and �B field lines point in opposite directions both inside and outside the
spheres.

PROBLEM 5 SOLUTION:

�E field of a uniformly �B field of a uniformly
polarized sphere magnetized sphere

The answer is (c), �E and �B field lines point in opposite directions inside the spheres but
in the same direction outside, as shown in the diagrams, which were scanned from the
first edition of Jackson. Note that the diagram on the left shows clearly that ∇ ·� �E = 0
at the boundary of the sphere, so it could not possibly be a picture of �B. It is at least
visually consistent with ∇×� �E = 0, or equivalently �E · d�� = 0 for any closed loop, as it
must be to describe an electrostatic field. The diagram on the right, on the other hand,
shows clearly that ∇×� �B = 0, or equivalently �B

∮
· d�� = 0, so it could not possibly be a

picture of an electrostatic field. It is at least qu

∮
alitatively consistent with ∇ ·� �B = 0, as

it must be.

�

� �
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.07: Electromagnetism II November 13, 2012
Prof. Alan Guth

FORMULA SHEET FOR QUIZ 2, V. 2
Exam Date: November 15, 2012

∗∗∗ Some sections below are marked with asterisks, as this section is. The asterisks
indicate that you won’t need this material for the quiz, and need not understand it. It is
included, however, for completeness, and because some people might want to make use
of it to solve problems by methods other than the intended ones.

Index Notation:

� � � �A ·B = AiBi , A×Bi = εijkAjBk , εijkεpqk = δipδjq − δiqδjp

detA = εi1i2···inA1,i1A2,i2 · · ·An,in

Rotation of a Vector:
A′

i = RijAj , Orthogonality: RijRik = δ T
jk (R T = I)

j=1 j=2 j=3

i=1 cosφ − sinφ 0
Rotation about z-axis by φ: Rz(φ)ij = i=2 sinφ cosφ 0

i=3


0 0 1



Rotation about axis n̂ by φ:∗∗∗

  

R(n̂, φ)ij = δij cosφ+ n̂in̂j(1

 
− cosφ)− εijkn̂k sinφ .

Vector Calculus:
∂

Gradient: (∇� ϕ)i = ∂iϕ , ∂i ≡
∂xi

Divergence: ∇ ·� �A ≡ ∂iAi

Curl: (∇×� �A)i = εijk∂jAk

ϕ
Laplacian: ∇2 ∂2

ϕ = ∇ ·� (∇� ϕ) =
∂xi∂xi

Fundamental Theorems of Vector Calculus:

Gradient:
∫ 	b

∇� · d� �ϕ � = ϕ(b)
a

− ϕ(�a)
	

Divergence:
∫

∇ ·� �Ad3x =
V

∮
�A

S

· d�a

where S is the boundary of V

Curl:
∫

(�
S

∇× �A) · d�a =

where P is th

∮
�A �

P

· d�
e boundary of S
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Delta Functions:∫
ϕ(x)δ(x− x′) dx = ϕ(x′) ,

∫
ϕ(�r )δ3(�r − �r ′) d3x = ϕ(�r ′)∫

d dϕ
ϕ(x) δ(x− x′) dx =

dx
−

dx

∣
δ(

∣
x=x′

x x
δ( i)
g(x)) =

∣
∑ −

, g(x 0|g′ i) =(xi)

∣
i

|

∇ ·�
(

�r − �r ′
= 2 1

= 4πδ3(�r �r ′)|�r − �r ′ 3

)
−∇ −| |�r − �r ′|(

r̂j
) (xj ) 1 δij 3r̂ r̂ 4π

∂ ≡ ∂ 3
i = − i j

i ∂i∂j =
−

+ δij δ (�r)
r2 r3

(
r

)
r3 3

3(�d∇ ·� · r̂)r̂ − �d 8π
= (

r3
− �d

3
· ∇� )δ3(�r )

3(�d r̂)ˆ �r d 4π∇×� · −
= − � ∇�d

r3 3
× δ3(�r )

Electrostatics:

�F = �qE , where
1 ∑ (�r − �r ′) qi 1

∫
(�r �r ′)�E(�r ) = =

−
ρ �

�r − �r |3 (r ′) d3x′
4πε0 | ′ 4πε0 | 3

�r − �ri
′|

ε0 =permittivity of free space = 8.854× 10−12 C2/(N·m2)
1

= 8.988× 109 N·m2/C2

4πε0 ∫ 	r 1 ρ(�r ′)
V (�r ) = V (�r 0)− �E(�r ′) · d��′ = d3x′

	r 0
4πε0 |�r − �r ′|

ρ

∫

∇ ·� �E = � �
ε0

∇× �E = 0 �, , E = −∇V

∇2 ρ
V = − (Poisson’s Eq.) , ρ = 0 = 2V = 0 (Laplace’s Eq.)

ε0
⇒ ∇

Laplacian Mean Value Theorem (no generally accepted name): If ∇2V = 0, then
the average value of V on a spherical surface equals its value at the center.

Energy:

1 1 ∑ qiqj 1 1 3 3 ρ(�r )ρ(�r ′)
W = = d x d x′

2 4πε0 rij 2 4πε0 �
ij

i=j

∫
|r − �r ′|

1 1
W =

∫
d3 � 2
xρ(�r)V (�r ) = ε

2 2 0

∫
E d3x

� ∣∣ ∣∣
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Conductors:
σ

Just outside, �E = n̂
ε0

Pressure on surface: 1σ2 | �E|outside

Two-conductor system with charges Q and −Q: Q = CV , W = 1CV 2
2

N isolated conductors:

Vi =
∑

PijQj , Pij = elastance matrix, or reciprocal capacitance matrix
j

Qi =
∑

CijVj , Cij = capacitance matrix
j

a a2

Image charge in sphere of radius a: Image of Q at R is q = − Q, r =
R R

Separation of Variables for Laplace’s Equation in Cartesian Coordinates:

V =
{
cosαx

}{
cosβy

}{
cosh γz

}
where γ2 = α2 + β2

sinαx sinβy sinh γz

Separation of Variables for Laplace’s Equation in Spherical Coordinates:

Traceless Symmetric Tensor expansion:

∇2 1 ∂ ∂ϕ 1
ϕ(r, θ, φ) =

r2 ∂r

(
r2
∂r

)
+
r2

∇2
θ ϕ = 0 ,

where the angular part is given by

∇2 1 ∂ ∂ϕ 1 ∂2ϕ
θ ϕ ≡ sin θ +

sin θ ∂θ

(
∂θ

)
sin2 θ ∂φ2

∇2 (�) ˆ ˆ ˆ = − ( + 1) (�)
θ Ci i ...i ni1ni2 . . . ni� � � Ci i ...i n̂i1 n̂i i1 2 . . . n2 � 1 2 �

ˆ
�
,

where (�)
Ci1i2...i�

is a symmetric traceless tensor and

n̂ = sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3 .

General solution to Laplace’s equation:

∞ ′(�
( ) =

(
)∑

(�) C
� + i1i2...iV �r Ci i ...i r

�

)
r

1 2 � î
r�+1 1 r̂i2 . . . r̂i� , where �r = rr̂

�=0
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Azimuthal Symmetry:
∞

V (�r ) =
∑(

A� r
� B
+ �

)
{ ẑi1 . . . ẑi r̂i

r� �
} r̂i1 . . .+1 �

�=0

where { . . .} denotes the traceless symmetric part of . . . .

Special cases:

{ 1 } = 1

{ ẑi } = ẑi

{ ẑiẑj } = ẑiẑj − 1δij3

{ ẑiẑj ẑk } = ẑiẑj ẑk − 1 ẑiδjk + ẑjδik + ẑkδij5

{ ẑiẑj ẑkẑm } = ẑiẑ
1

j ẑk ẑm

(
− (

ẑiẑjδkm + ẑiẑkδ

)
mj + ẑiẑmδjk + ẑjzk7

ˆ δim

+ ẑj ẑmδik + ẑk ẑmδ
1

ij + δijδkm δjk35 + δikδjm + δim

Legendre Polynomial / Spherical H

)
armo

(
nic expansion:

)

General solution to Laplace’s equation:
∞ �

V (�r ) =
∑ ∑ (

B�m
A�m r� + Y�m(θ, φ)

r�+1
�=0 m=−�

)

Orthonormality:
∫ 2π

dφ
∫ π

sin θ dθ Y�
∗
m (θ, φ Y′ ′ ) �m(θ, φ) = δ�′�δm′m

0 0

Azimuthal Symmetry:
∞

V (�r ) =
∑(

A r�
B

� + �

r�+1
�=0

)
P�(cos θ)

Electric Multipole Expansion:

First several terms:
1 [ Q �p · r̂ 1 r̂

V (�r ) = + + ir̂j
Q

4πε r r2 2 ij + , where
r30

· · ·
]

Q =
∫

d3x ρ(�r) , p =
∫
d3 3

i x ρ(�r ) xi Qij =
∫
d x ρ(�r)(3x 2

ixj−δij |�r | ) ,

1 p� r̂ 1 3(p� r̂)r̂ p� 1� ( �Edip �r ) =
·−

( )
= r

2

·∇ p δ3(�
4πε r 4 i )

πε r3
−

0 0
−

3ε0
1 1∇×� �Edip( � � ��r ) = 0 , ∇ · Edip(�r ) = ρdip(�r ) =
0

− p�
ε ε0

· ∇δ3(�r )
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Traceless Symmetric Tensor version:

1 ∞
V (�r ) =

∑ 1 (�)
Ci ...i r̂i1 . . . r̂i� ,4πε +1 1

0 r� �

�=0

where

(�) (2�
Ci ...i =

− 1)!!
∫
ρ(�r ) { x d3

i1 . . . xi� } x (�r
1 � �!

≡ rr̂ ≡ xiêi)

1 ∞ (2� 1)!! r′�
=
∑ − { r̂i1 . . . r̂i� } r̂′ . . . r̂′ , for r′ < r|�r − �r ′| �! r�+1 i1 i�
�=0

(2�)!
(2�− 1)!! ≡ (2�− 1)(2�− 3)(2�− 5) . . .1 = , with (

2��!
−1)!! ≡ 1 .

Reminder: { . . .} denotes the traceless symmetric part of . . . .

Griffiths version:

1 ∞
V (�r ) =

∑ 1
∫

′�r ρ(�r ′)P (c 3

4 � os θ′) d x
πε0 r�+1

�=0

where θ′ = angle between �r and �r ′.

1 ∞ ∞
=
∑ r�< 1

P�(cos θ′) , √ =
∑

λ�P x|�r − �r ′| r�+1
)

> 1
�=0

− 2λx+
�(

λ2
�=0

1 d �

P�(x) = (x2 1)� , (Rodrigues’ formula)
2��!

(
dx

)
−

1

P�(1) = 1 P�(−x) = (−1)�
2

P�(x)
∫

dxP�′(x)P�(x) = δ�′�
−1 2�+ 1

Spherical Harmonic version:∗∗∗

1 ∞ �∑ ∑ 4π q�m
V (�r ) = Y�m(θ, φ)

4πε0 2�+ 1 r�+1
�=0 m=−�

where q =
∫
Y ∗ r′� 3

�m �m ρ(�r ′) d x′

1 ∞ �∑ ∑ 4π r′�
= Y�m

∗ (θ′, φ′)Y�m(θ, φ) , for r < r|�r − �r ′| 2�+ 1 r�+1
′

�=0 m=−�
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Electric Fields in Matter:

Electric Dipoles:

�p =
∫
d3x ρ(�r )�r

ρdip(�r ) = − ∇�p� · 	r δ
3(�r − �rd) , where �rd = position of dipole

�F = (p� · ∇� ) �E = ∇� (p� · �E) (force on a dipole)

� = p�× �E (torque on a dipole)

U = −p� · �E

Electrically Polarizable Materials:
�P (�r ) = polarization = electric dipole moment per unit volume

�ρbo = −∇ · �und P , σbound = P · n̂
�D ≡ � � � � � �ε0E + P , ∇ ·D = ρfree , ∇× E = 0 (for statics)

Boundary conditions:
σ

Eab
⊥

ove − Ebe
⊥

low = Dab
⊥

ε ove
0

−Dbe
⊥

low = σfree

� � � � � �E
‖ − E

‖ = 0 D
‖ −D

‖ ‖
above below above below = Pabove − P

‖
below

Linear Dielectrics:
�P = �ε0χeE, χe = electric susceptibility
ε ≡ ε0(1 + χe) = permittivity, �D = �εE

ε
εr = = 1 + χe = relative permittivity, or dielectric constant

ε0

Nα/ε
Clausius-Mossotti equation: 0

χe = ,
Nα

where N = number density of atoms
1−

3ε0

or (nonpolar) molecules, α = atomic/molecular polarizability (�P = �αE)

1
Energy: W =

∫
� �D E

2
· d3x (linear materials only)

Force on a dielectric: �F = −∇� W (Even if one or more potential differences are
held fixed, the force can be found by computing the gradient with the total
charge on each conductor fixed.)

Magnetostatics:

Magnetic Force:
dp� 1� = ( � + × �F q E �v B) = , where p� = γm0�v , γ =
dt

√
1− v2

c2
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�F =
∫

d� ��× �B =
∫

�I J ×B d3x

Current Density:

Current through a surface S: IS =
∫

�J
S

· d�a

∂ρ
Charge conservation: = −∇ ·� �J

∂t

Moving density of charge: �J = ρ�v

Biot-Savart Law:

µ0
∫

d�′ × (r − �� � �r ′) µ K(�r ′�B(�r ) = 0 ) (�r �r ′)
I = da′

4π |�r − �r ′|3
× −

4π

∫
|�r − �r ′|3

µ
= 0

∫ �J(�r ′)× (�r − �r ′)
d3x

4π |�r − �r ′|3

where µ0 = permeability of free space ≡ 4π × 10−7 N/A2

Examples:
µ I

Infinitely long straight wire: �B = 0
φ̂

2πr
Infintely long tightly wound solenoid: �B = µ0nI0 ẑ , where n = turns per

unit length
µ IR2

Loop of current on axis: �B(0, 0, z) = 0
ẑ

2(z2 +R2)3/2

1
Infinite current sheet: �B(�r ) = �µ0K × n̂ , n̂ = unit normal toward �r

2

Vector Potential:

�µ�( ) = 0 J
co

∫
(�r ′)

A �r ul d3 ′ , �B = ∇×� � � �x A ,
4π |�r − �r ′

∇ ·A| coul = 0

∇ ·� �B = 0 (Subject to modification if magnetic monopoles are discovered)

Gauge Transformations: �A′( � � � � ��r ) = A(�r ) + ∇Λ(�r ) for any Λ(�r ). B = ∇ × A is
unchanged.

Ampère’s Law:

∇×� �B = �µ0J , or equivalently
∫

�B
P

· d�� = µ0Ienc
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Magnetic Multipole Expansion:

Traceless Symmetric Tensor version:

µ
∞

Aj(r ) =
0

�
4π

∑ {
�

M(�) r̂i1 . . . r̂i�
j;i1i2...i�

}
r�+1

=0

where M(�) (2�
j;i1i2...i

=
− 1)!!

( . . .
!

∫
d3xJj �r ){ xi1 xi� � �

}

Current conservation restriction:
∫

d3x Sym(xi1 . . . xi� Ji�) = 0−1
i1...i�

where Sym means to symmetrize — i.e. average over all
i1...i

ordering
�

s — in the indices i1 . . . i�
Special cases:

� = 1:
∫

d3x Ji = 0

� = 2:
∫

d3x (Jixj + Jjxi) = 0

µ
Leading term (dipole): �( ) = 0 m� ˆ

A �r
× r

,
4π r2

where
1

mi = − ε
2 ijkM(1)

j;k

1
∫

1
m� = I �r × d�� =

∫
d3x�r

2 P 2
× �J = I�a ,

where �a =
∫

d�a for any surface S spanning P
S

µ0 m� × r̂ µ0 3(m� · r̂)r̂ −m� 2µ�B ( ) = ∇×� = + 0
dip �r mδ� 3(�r )

4π r2 4π r3 3

∇ ·� � � � � �Bdip(�r ) = 0 , ∇×Bdip(�r ) = µ0Jdip(�r ) = −µ0m� ×∇δ3(�r )
Griffiths version:

µ�( ) = 0I
∞∑ 1

∮
( ′)� (cos ′)d�A �r r P

4 � θ �′
π r�+1

�=0

Magnetic Fields in Matter:

Magnetic Dipoles:

1
m� = I

2

∫
1

�r
P

× d�� =
2

∫
d3x�r × �J = I�a
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�Jdip(�r ) = −m� ×∇� 	r δ
3(�r − �r d), where �r d = position of dipole

� ∇�F = (m� · �B) (force on a dipole)
� = m� × �B (torque on a dipole)

U = −m� · �B
Magnetically Polarizable Materials:

�M(�r ) = magnetization = magnetic dipole moment per unit volume
�Jbound = ∇×� �M , � �Kbound =M × n̂

1�H ≡ �B − �M , ∇×� �H = �Jfree , ∇ ·� �B = 0
µ0

Boundary conditions:
Bab

⊥
ove −Bbe

⊥
low = 0 Hab

⊥
ove −Hbe

⊥
low = −(Mab

⊥
ove −Mbe

⊥
low)

� ‖ � ‖ � � ‖ � ‖ �Babove −Bbelow = µ0(K × n̂) Habove −Hbelow = Kfree × n̂

Linear Magnetic Materials:
�M = �χmH, χm = magnetic susceptibility
µ = µ0(1 + χm) = permeability, �B = �µH

Magnetic Monopoles:
µ� ( ) = 0 qm

B �r ˆ = �r ; Force on a static monopole: �F q
4 mB
π r2

µ q q
Angular momentum of monopole/charge system: � = 0 e m

L r̂ , where r̂ points
4π

from qe to qm
µ q q 1

Dirac quantization condition: 0 e m = h̄
4π 2

× integer

Connection Between Traceless Symmetric Tensors and Legendre Polynomials
or Spherical Harmonics:

(2�)!
P�(cos θ) = { ẑi1 . . . ẑ2�(�!) i2 �

} n̂i1 . . . n̂i�
For m ≥ 0,

( ) = (�,m)
Y�m θ, φ Ci ...i n̂i1 . . . n̂i ,

1 ��

where (�,m)
C = d { û+ . . . û+
i1i2...i �m� i1 i z

m îm+1 . . . ẑi� } ,
(−1)m(2�)! + 1

with d�m =
2��

√
2m (2� )

,
! 4π (�+m)! (�−m)!

and û+ 1
= √ (êx + iêy)

2
Form m < 0, Y�,−m(θ, φ) = (−1)mY�m

∗ (θ, φ)
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More Information about Spherical Harmonics:∗∗∗√
2�+ 1 (�

Y�m(θ, φ) =
−m)!

Pm

4π (�+m)! � (cos θ)eimφ

where Pm
� (cos θ) is the associated Legendre function, which can be defined by

m

Pm ( 1)m d�+
� (x) =

−
(1

�!
− x2)m/2 (x2 1)�

2� dx�+m
−

Legendre Polynomials:

Image by MIT OpenCourseWare.

SPHERICAL HARMONICS  Ylm(θ , φ)

       Y00 =   1

4π

l = 1

l = 0

cos θ     Y10 = 
4π

3

sin θeiφ     Y11 = - 
8π

3

l = 2 sin θ cosθeiφ      Y21 = - 
8π

15

(   cos2θ       Y20 =  
4π

5

sin2 θe2iφ     Y22 =  
2π

151
4

3
2

1 
2 )

l = 3

sin2 θ cos θe2iφ      Y32 =  
2π

105

(   cos3θ       

Y31 =  
4π

21

sin3 θe3iφ     Y33 = -  
4π

351
4

5
2

1
4

1
4

3 
2  cos θ)

- sinθ (5cos2θ -1)eiφ 

Y30 =  
4π

7
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