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8.07 QUIZ 2, FALL 2012 p. 2

PROBLEM 1: THE MAGNETIC FIELD OF A SPINNING, UNIFORMLY
CHARGED SPHERE (25 points)

This problem is based on Problem 1 of Problem Set 8.

A uniformly charged solid sphere of radius R carries a total charge Q, and is set
spinning with angular velocity ω about the z axis.

(a) (10 points) What is the magnetic dipole moment of the sphere?

(b) (5 points) Using the dipole approximation, what is the vector potential �A(�r ) at large
distances? (Remember that �A is a vector, so it is not enough to merely specify its
magnitude.)

(c) (10 points) Find the exact vector potential INSIDE the sphere. You may, if you wish,
make use of the result of Example 5.11 from Griffiths’ book. There he considered a
spherical shell, of radius R, carrying a uniform surface charge σ, spinning at angular
velocity ω� directed along the z axis. He found the vector potential

µ0Rωσ
r sin θ φ ,ˆ (if r

� 3
≤ R)

A(r, θ, φ) =


 µ0R

4 (1.1)
ωσ sin θ

φ ,ˆ (if r
3 r2

≥ R) .

PROBLEM 2: SPHERE WITH VARIABLE DIELECTRIC CONSTANT (35
points)

A dielectric sphere of radius R has variable permittivity, so the permittivity throughout
space is described by

ε 2

( ) =
{

0(R/r) if r < R
ε r (2.1)

ε0 , if r > R .

There are no free charges anywhere in this problem. The sphere is embedded in a constant
external electric field �E = E0ẑ, which means that V (�r ) ≈ −E0r cos θ for r � R.

(a) (9 points) Show that V (�r ) obeys the differential equation

d ln ε ∂V∇2V + = 0 (2.2)
dr ∂r

for all �r , as a consequence of the laws of electrostatics.

(b) (4 points) Explain why the solution can be written as

∞
V (r, θ) =

∑
V�(r){ ẑi1 . . . ẑi�

�=0

} r̂i1 . . . r̂i� , (2.3a)
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or equivalently (your choice)
∞

V (r, θ) =
∑

V�(r)P�(cos θ) , (2.3b)
�=0

where { . . .} denotes the traceless symmetric part of . . . , and P�(cos θ) is the Leg-
endre polynomial. (Your answer here should depend only on general mathematical
principles, and should not rely on the explicit solution that you will find in parts (c)
and (d).)

(c) (9 points) Derive the ordinary differential equation obeyed by V�(r) (separately for
r < R and r > R) and give its two independent solutions in each region. Hint: they
are powers of r. You may want to know that

d
(

dP
sin �(cos θ)

θ

)
= −�(�+ 1) sin θP

dθ d �(cos θ) . (2.4)
θ

The relevant formulas for the traceless symmetric tensor formalism are in the formula
sheets.

(d) (9 points) Using appropriate boundary conditions on V (r, θ) at r = 0, r = R, and
r → ∞, determine V (r, θ) for r < R and r > R.

(e) (4 points) What is the net dipole moment of the polarized sphere?

PROBLEM 3: PAIR OF MAGNETIC DIPOLES (20 points)

Suppose there are two magnetic dipoles. One has dipole moment m� 1 = m0ẑ and
is located at �r 1 = +1a ẑ; the other has dipole moment m� 2 = −m0z2 ,̂ and is located at
�r 2 = −1a z

2
.̂

(a) (10 points) For a point on the z axis at large z, find the leading (in powers of 1/z)
behavior for the vector potential � �A(0, 0, z) and the magnetic field B(0, 0, z).

(b) (3 points) In the language of monopole (� � �
octupole (� = 3), etc., what type of field is produced at large distances by this
current configuration? In future parts, the answer to this question will be called a
whatapole.

(c) (3 points) We can construct an ideal whatapole — a whatapole of zero size — by
taking the limit as a → 0, keeping m n

0a fixed, for some power n. What is the correct
value of n?

(d) (4 points) Given the formula for the current density of a dipole,

�Jdip(�r ) = − �m� ×∇ 3
�r δ (�r − �rd) , (3.1)

where �r d is the position of the dipole, find an expression for the current density
of the whatapole constructed in part (c). Like the above equation, it should be
expressed in terms of δ-functions and/or derivatives of δ-functions, and maybe even
higher derivatives of δ-functions.

= 0), dipole ( = 1), quadrupole ( = 2),
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PROBLEM 4: UNIFORMLY MAGNETIZED INFINITE CYLINDER (10
points)

Consider a uniformly magnetized infinite circular cylinder, of radius R, with its axis
coinciding with the z axis. The magnetization inside the cylinder is �M = M0ẑ.

(a) (5 points) Find �H(�r ) everywhere in space.

(b) (5 points) Find �B(�r ) everywhere in space.

PROBLEM 5: ELECTRIC AND MAGNETIC UNIFORMLY POLARIZED
SPHERES (10 points)

Compare the electric field of a uniformly polarized sphere with the magnetic field of
a uniformly magnetized sphere; in each case the dipole moment per unit volume points
along ẑ. Multiple choice: which of the following is true?

(a) The �E and �B field lines point in the same direction both inside and outside the
spheres.

(b) The �E and �B field lines point in the same direction inside the spheres but in opposite
directions outside.

(c) The �E and �B field lines point in opposite directions inside the spheres but in the
same direction outside.

(d) The �E and �B field lines point in opposite directions both inside and outside the
spheres.

No justification needed. (But if you give a justification, there is a chance that you might
get partial credit for an incorrect answer.)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.07: Electromagnetism II November 13, 2012
Prof. Alan Guth

FORMULA SHEET FOR QUIZ 2, V. 2
Exam Date: November 15, 2012

∗∗∗ Some sections below are marked with asterisks, as this section is. The asterisks
indicate that you won’t need this material for the quiz, and need not understand it. It is
included, however, for completeness, and because some people might want to make use
of it to solve problems by methods other than the intended ones.

Index Notation:

� �A ·B = �AiBi , A× �Bi = εijkAjBk , εijkεpqk = δipδjq − δiqδjp

detA = εi1i2···inA1,i1A2,i2 · · ·An,in

Rotation of a Vector:
A′
i = RijA

T
j , Orthogonality: RijRik = δjk (R T = I)

j=1 j=2 j=3

i=1 cosφ − sinφ 0
Rotation about z-axis by φ: Rz(φ)ij = i=2


sinφ cosφ 0

i=3 0 0 1



Rotation about axis n̂ by φ:∗∗∗

  
R(n̂, φ)ij = δij cosφ+ n̂in̂j(1


− cosφ)− εijkn̂k sin


φ .

Vector Calculus:
∂

Gradient: (∇� ϕ)i = ∂iϕ , ∂i ≡
∂xi

Divergence: ∇ ·� �A ≡ ∂iAi

Curl: (∇×� �A)i = εijk∂jAk

∂2ϕ
Laplacian: ∇2ϕ = ∇ ·� (∇� ϕ) =

∂xi∂xi

Fundamental Theorems of Vector Calculus:

�

Gradient:
∫ b

∇� � �ϕ · d� = ϕ(b)
�a

− ϕ(�a)

Divergence:
∫

∇ ·� �Ad3 �x =
V

∮
A

S

· d�a

where S is the boundary of V

Curl:
∫

(∇×� �) · d =
∮

� �A �a A
S P

· d�
where P is the boundary of S
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Delta Functions:∫
ϕ(x)δ(x− x′) dx = ϕ(x′) ,

∫
ϕ(�r )δ3(�r − �r ′) d3x = ϕ(�r ′)∫

d dϕ
ϕ(x) δ(x =

d
− x′) dx

x
−

dx

∣
δ(

∣
x=x′

x x )
δ(g(x)) =

− i
, g(x

) i
g′(xi

∣∣

�

∑
) = 0

i
| |

∇ ·�
(

r − �r ′ )
= −∇2 1

= 4πδ3(�r �r ′)|�r − �r ′ −|3 |�r − �r ′|(
r̂j
) (xj ) (

1
)

δij − 3r̂ir̂j 4π
∂i ≡ ∂i = ∂j =

r2 r3
−∂i + δ

r r3 3 ij δ
3(�r)

3(�d · ˆ �r)r̂ − d 8π∇ ·� = − (� �d )
r3 3

· ∇ δ3(�r )

3(�d� · r̂)r̂
3

− �d 4π∇× =
r

− �d
3

×∇� δ3(�r )

Electrostatics:

�F = �qE , where
1 ∑ (�r − �r ′) q 1 )�E(�r ) = i

∫
(�r − �r ′

ρ3 = 3 (�r ′) d3x′
4πε0 |�r − �r ′| 4πε0 |�ri − �r ′|

ε0 =permittivity of free space = 8.854× 10−12 C2/(N·m2)
1

= 8.988 109 N m2/C2

4πε0
× ·

V (�r ) = V (�r 0)−
∫ �r 1 ρ(�r ′)�E( ��r ′) · d�′ = d3x′
�r 0

ρ∇ ·� �E = � �, ∇× �E = 0 , E =
ε

−� V
0

∇

∇2 ρ
V = − (Poisson’s Eq.) , ρ = 0 = 2V = 0 (Laplace’s Eq.)

ε0
⇒ ∇

Laplacian Mean Value Theorem (no generally accepted name): If ∇2V = 0, then
the average value of V on a spherical surface equals its value at the center.

Energy:

1 1 ∑ qiqj 1 1
W = =

∫
3 3 ρ(�r )ρ(�r ′)

d x d x′
2 4πε0 rij 2 4πε0

ij
i=j

|�r − �r ′|

1 1
W =

∫
d 23xρ(�r)V (�r ) = ε x

2 0

∫ ∣∣�E∣∣ d3

2

4πε0

∫
|�r − �r ′|

�
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Conductors:
σ

Just outside, �E = n̂
ε0

Pressure on surface: 1σ2 | �E|outside

Two-conductor system with charges Q and −Q: Q = CV , W = 1CV 2
2

N isolated conductors:

Vi =
∑

PijQj , Pij = elastance matrix, or reciprocal capacitance matrix
j

Qi =
∑

CijVj , Cij = capacitance matrix
j

a a2

Image charge in sphere of radius a: Image of Q at R is q = − Q, r =
R R

Separation of Variables for Laplace’s Equation in Cartesian Coordinates:

V =
{
cosαx

}{
cosβy

}{
cosh γz

}
where γ2 = α2 + β2

sinαx sinβy sinh γz

Separation of Variables for Laplace’s Equation in Spherical Coordinates:

Traceless Symmetric Tensor expansion:

∇2 1 ∂
ϕ(r, θ, φ) =

r2 ∂r

(
r2 ∂ϕ

∂r

)
1

+
r2

∇2
θ ϕ = 0 ,

where the angular part is given by
1 ∂ ∂ϕ∇2

θ ϕ ≡
(
sin θ

sin θ ∂θ ∂θ

)
1 ∂2ϕ

+
sin2 θ ∂φ2

∇2 (�)
θ Ci i ...i n̂

(�)
i1 2 � 1 n̂i2 . . . n̂i� = −�(�+ 1)Ci i ...i n̂i ,

1 1 n̂i2 . . . n̂i2 ��

where (�)
Ci1i2...i�

is a symmetric traceless tensor and

n̂ = sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3 .

General solution to Laplace’s equation:

∞ C
′(�)

V ( i i�r ) =

(∑
(�)

C �

i1i2...i
r�

�
+ 1i2...

)
r̂i

r�+1 1 r̂i2 . . . r̂i� , where �r = rr̂
�=0
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Azimuthal Symmetry:
∞

V (�r ) =
∑(

B�
A �
� r +

)
{ ẑi1 . . . ẑi� } r̂i ˆ

r�+1 1 . . . ri�
�=0

where { . . .} denotes the traceless symmetric part of . . . .

Special cases:

{ 1 } = 1

{ ẑi } = ẑi

{ ẑ 1
iẑj } = ẑiẑj − δij3

{ ẑiẑj ẑk } = ẑiẑj ẑk − 1
(
ẑiδjk + ẑjδik + ẑkδij5

{ ẑiẑj ẑkẑm } = ẑiẑj ẑk ẑm − 1
(
ẑiẑjδkm + ẑiz7 k̂δ

)
mj + ẑiẑmδjk + ẑj ẑkδim

+ ẑj ẑmδik + ẑk ẑ
1

mδij
)
+ δijδkm + δikδjm + δimδjk35

Legendre Polynomial / Spherical Harmo

(
nic expansion:

)

General solution to Laplace’s equation:
∞ �

V (�r ) =
∑ ∑ (

A � B�m
�m r +

r�+1
�=0 m=−�

)
Y�m(θ, φ)

Orthonormality:
∫ 2π

dφ
0

∫ π

sin θ dθ Y�
∗
′m′(θ, φ)Y�m(θ, φ) = δ�′�δm′m

0

Azimuthal Symmetry:
∞

B
V (�r ) =

∑(
A r�� + �

r�+1
�=0

)
P�(cos θ)

Electric Multipole Expansion:

First several terms:
1 Q p� r̂ 1 r̂ r

V ( i ĵ
�r ) =

[
+

·
+ Qij + · · ·

]
, where

4πε0 r r2 2 r3

Q =
∫

d3x ρ(�r) , pi =
∫

d3x ρ(�r ) xi Qij =
∫

d3x ρ(�r)(3x 2
ixj−δij |�r | ) ,

1�Edip(�r ) = �
(
p� · r̂) 1 3(p�

=
· r̂)r̂ − p� 1−

4
∇

4
− p 3

3 iδ (�r )
πε r2

0 πε0 r3 ε0

1 1∇×� � ( ) = 0 ∇ ·� � ( ) = ( ) = − · ∇�Edip �r , Edip �r ρdip �r p� δ3(�r )
ε0 ε0
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Traceless Symmetric Tensor version:

1 ∞ 1
V (�r ) =

4πε

∑
(�)

C ri . . . ri ,
r�+1 i1...i ��

ˆ 1 ˆ
0
�=0

where

(�) (2� 1)!!
C 3
i1...i

ρ �r xi . . . xi� x �r rr xiei�
=

−
�!

∫
( ) { 1 } d ( ≡ ˆ≡ ˆ )

1 ∞∑ (2�− 1)!! r′�
= { r̂|�r − �r ′| �! i

r�+1 1 . . . r̂i� } r̂i′1 . . . r̂i′� , for r′ < r
�=0

(2�)!
(2�− 1)!! ≡ (2�− 1)(2�− 3)(2�− 5) . . .1 = , with (−1)!! ≡ 1 .

2��!

Reminder: { . . .} denotes the traceless symmetric part of . . . .

Griffiths version:

1 ∞
V (�r ) =

∑ 1
∫

′�r ρ(�r ′)P (c
4 � os θ′) d3x
πε r�+1

0
�=0

where θ′ = angle between �r and �r ′.

1 ∞
r� 1 ∞

= < P (cos θ′) , √ = λ�P (x)| �
r − �r ′|

∑
�

� r�+1 1
�=0

− 2λx+ λ2
>

∑
�=0

1
(

d �

P�(x) =
)

(x2 − 1)� , (Rodrigues’ formula)
2��! dx

1 2
P�(1) = 1 P�(−x) = (−1)�P�(x)

∫
dxP�′(x)P�(x) = δ

1 2 �
�+ 1

′�
−

Spherical Harmonic version:∗∗∗

1 ∞ �∑ ∑ 4π q
V (�r ) = �m

Y�m(θ, φ)
4πε0 2�+ 1 r�+1

�=0 m=−�

where q =
∫

Y ∗ r′�ρ(�r ′) d3
�m �m x′

1 ∞ �∑ ∑ 4π r′�
= Y�m

∗ (θ′, φ′)Y�m(θ, φ) , for r′ < r|�r − �r ′| 2�+ 1 r�+1
�=0 m=−�
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Electric Fields in Matter:

Electric Dipoles:

�p =
∫

d3x ρ(�r )�r

�ρ 3
dip(�r ) = −p� · ∇�r δ (�r − �rd) , where �rd = position of dipole
� � � � �F = (p� · ∇)E = ∇(p� · E) (force on a dipole)

� = × �p� E (torque on a dipole)

U = −p� · �E

Electrically Polarizable Materials:
�P (�r ) = polarization = electric dipole moment per unit volume

ρbound = −∇ · �P , σbound = �P · n̂
� ≡ � + � ∇ ·�D ε0E P , �D = ρfree , ∇×� �E = 0 (for statics)

Boundary conditions:
σ

Eab
⊥

ove − Ebe
⊥

low = D⊥
ε above −Dbe

⊥
low = σfree

0

�E
‖ − � = 0 �E

‖
D

‖ − �D
‖ � ‖ � ‖

above below above below = Pabove − Pbelow

Linear Dielectrics:
�P = �ε0χeE, χe = electric susceptibility

�ε ≡ ε0(1 + χe) = permittivity, D = �εE

ε
εr = = 1 + χe = relative permittivity, or dielectric constant

ε0

Nα/ε
Clausius-Mossotti equation: χe =

0
, N

Nα
where = number density of atoms

1−
3ε0

or (nonpolar) molecules, = atomic/molecular polarizability (� �α P = αE)

1
Energy: W =

∫
�D · �E d3x (linear materials only)

2
Force on a dielectric: �F = −∇� W (Even if one or more potential differences are

held fixed, the force can be found by computing the gradient with the total
charge on each conductor fixed.)

Magnetostatics:

Magnetic Force:
dp� 1� = ( � + × �F q E �v B) = , where p� = γm
d 0�v , γ =
t

√
1− v2

c2
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�F =
∫

Id� � � ��×B =
∫

J ×B d3x

Current Density:

Current through a surface S: IS =
∫

�J d�a
S

·

∂ρ
Charge conservation: =

∂t
−∇ ·� �J

Moving density of charge: �J = ρ�v

Biot-Savart Law:

�µ0
∫

d�′ × (�r − �r ′) �µ K(�r ′) (�r �r )�B(�r ) = 0
′

I =
4π

∫ ×
4π |�r − �r ′|3

−
da′|�r − �r ′|3

µ0
∫ �J(�r ′)× (�r − �r ′)

= d3x
4π |�r − �r ′|3

where µ0 = permeability of free space ≡ 4π × 10−7 N/A2

Examples:
µ I

Infinitely long straight wire: �B = 0
φ̂

2πr
Infintely long tightly wound solenoid: �B = µ0nI0 ẑ , where n = turns per

unit length
µ IR2

Loop of current on axis: �B(0, 0, z) = 0
ẑ

2(z2 +R2)3/2

1
Infinite current sheet: �B( ��r ) = µ0K × n̂ , n̂ = unit normal toward �r

2

Vector Potential:

�µ J(�r ′)�A( 0 ��r ) =
∫

d3
coul x′ , B =

4π �r �r ′ ∇×� � �A , ∇ · �A| − | coul = 0

∇ ·� �B = 0 (Subject to modification if magnetic monopoles are discovered)

Gauge Transformations: �A′( ��) = �A( � � �r �r ) + ∇Λ(�r ) for any Λ(�r ). B = ∇ × A is
unchanged.

Ampère’s Law:

∇×� �B = �µ0J , or equivalently
∫

�B
P

· d�� = µ0Ienc
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Magnetic Multipole Expansion:

Traceless Symmetric Tensor version:

µ0
∞

(�) { r̂i
Aj(�r ) = 1 . . . r̂i� }

4π

∑
i�

=0

Mj;i1i2... r�+1
�

where M(�) (2� 1)!! 3
j;i1i2...i

=
− ∫

d xJj(�r ){ xi� �! 1 . . . xi� }

Current conservation restriction:
∫

d3x Sym(xi1 . . . xi� 1Ji�) = 0−
i1...i�

where Sym means to symmetrize — i.e. average over all
i1...i

ordering
�

s — in the indices i1 . . . i�

Special cases:

� = 1:
∫

d3x Ji = 0

� = 2:
∫

d3x (Jixj + Jjxi) = 0

µ m� r̂
Leading term (dipole): �A(�r ) = 0 ×

,
4π r2

where
1 (1)

mi = − ε
2 ijkMj;k

1 1
m� = I

∫
�r

2 P

× d�� =
2

∫
d3x�r × �J = I�a ,

where �a =
∫

d�a for any surface S spanning P
S

µ0 m� × r̂ µ0 3(m��Bdip(�r ) = � =
2

· r̂)r̂ −m� 2µ
4π

∇× + 0
mδ� 3(�r )

r 4π r3 3

∇ ·� �Bdip(�r ) = 0 �, ∇× �Bdip(�r ) = �µ0Jdip( ∇��r ) = −µ0m� × δ3(�r )

Griffiths version:

µ0I
∞ 1�A(�r ) =
∑ ∮

(r′)� �P�(cos θ′)d�′4π r�+1
�=0

Magnetic Fields in Matter:

Magnetic Dipoles:

1
m� = I

2

∫
1��r

P

× d� = d3x�r a
2

∫
× �J = I�
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�Jdip(�r ) = −m� ×∇� �r δ
3(�r − �r d), where �r d = position of dipole

�F = ∇� (m� · �B) (force on a dipole)
� = m� × �B (torque on a dipole)

U = − �m� ·B
Magnetically Polarizable Materials:

�M(�r ) = magnetization = magnetic dipole moment per unit volume
� � �J und = ∇×�
b M , �
o Kbound = M × n̂

1�H ≡ �B − �M , ∇×� �H = � � �Jfree ,
µ0

∇ ·B = 0

Boundary conditions:
Bab

⊥
ove −Bbe

⊥
low = 0 Hab

⊥
ove −Hbe

⊥
low = −(Mab

⊥
ove −Mbe

⊥
low)

�B
‖ ‖
abo e − �

v Bbelow = µ0( �K × n̂) �H
‖
above − �H

‖
below = �Kfree × n̂

Linear Magnetic Materials:
�M = �χmH, χm = magnetic susceptibility
µ = � �µ0(1 + χm) = permeability, B = µH

Magnetic Monopoles:
µ q�B(�r ) = 0 m

r̂ ; Force on a static monopole: � �F = q
4 mB
π r2

µ q q
Angular momentum of monopole/charge system: �L = 0 e m

r̂ , where r̂ points
4π

from qe to qm
µ q

Dirac quantization condition: 0 eqm 1
= h̄

4π 2
× integer

Connection Between Traceless Symmetric Tensors and Legendre Polynomials
or Spherical Harmonics:

(2�)!
P�(cos θ) = { ẑ . . .

2�(�!) i2 1 ẑi� } n̂i1 . . . n̂i�
For m ≥ 0,

Y ( ) = (�,m)
�m θ, φ Ci ...i n̂i . . .

1 � 1 n̂i� ,

where (�,m)
C = d { û+ . . . û+
i i ...i �m1 2 � i1 i z

m îm+1 . . . ẑi� } ,

(
with d�m =

−1)m(2�)! m + 1
� !

√
2 (2� )

,
2 � 4π (�+m)! (�−m)!

and û+ 1
= √ (êx + iêy)

2
Form m < 0, Y�,−m(θ, φ) = (−1)mY�m

∗ (θ, φ)
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More Information about Spherical Harmonics:∗∗∗√
2�+ 1 (�

Y�m(θ, φ) =
−m)!

Pm

4π (�+m)! � (cos θ)eimφ

where Pm
� (cos θ) is the associated Legendre function, which can be defined by

m

Pm(x) = (1− x2)m/2 (x2 − 1)�� 2��! dx�+m

Legendre Polynomials:

( 1)m d�+−

SPHERICAL HARMONICS  Ylm(θ , φ)

       Y00 =   1

4π

l = 1

l = 0

cos θ     Y10 = 
4π

3

sin θeiφ     Y11 = - 
8π

3

l = 2 sin θ cosθeiφ      Y21 = - 
8π

15

(   cos2θ       Y20 =  
4π

5

sin2 θe2iφ     Y22 =  
2π

151
4

3
2

1 
2 )

l = 3

sin2 θ cos θe2iφ      Y32 =  
2π

105

(   cos3θ       

Y31 =  
4π

21

sin3 θe3iφ     Y33 = -  
4π

351
4

5
2

1
4

1
4

3 
2  cos θ)

- sinθ (5cos2θ -1)eiφ 

Y30 =  
4π

7
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