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Practice Exam #4 

Problem 1: Ripplons (35 points) 

(k) 

k 

We have seen that the bulk motion of a solid or liquid can be described by harmonic 
normal modes (that is, normal modes each having a harmonic oscillator Hamiltonian) 
known as phonons. In a similar manner the two dimensional waves on an interface 
between a liquid and its vapor can be described by harmonic normal modes known 
as “ripplons” each having a single direction of polarization perpendicular to the in­
terface. The dispersion curve for these elementary excitations is isotropic and given 

k2 + k2hω(k) ≡ ε(k) =  bk3/2 where k = y . For a rectangular sample with di­by ¯ x 

mensions Lx and Ly , the wavevectors allowed by periodic boundary conditions are 
�k = (2π/Lx)mx̂ + (2π/Ly )nŷ where m and n can take on all positive and negative 
integer values. 

a) What is the density of allowed wavevectors D(�k) such that D(�k)dkxdky gives 

the number of allowed wavevectors in the area dkxdky around the point �k in 
k-space? 

b)  Find an expression for the density of states as a function of energy D(ε) for 
the ripplons in terms of the parameter b and the area A = LxLy . Sketch your 
result. 

c)  Find an expression for the ripplon contribution to the constant area heat ca­
pacity CA(T ). Leave your result in terms of a dimensionless integral (do not 
try to evaluate the integral). How does CA(T ) depend on T ? Sketch the result. 

d) Does the system exhibit energy gap behavior? Explain your reasoning. 
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Problem 2: Impurity Atom (35 points) 

1.5 ∆ d	 e 
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0
 a 

An impurity atom in a solid has 3 electrons (spin 1/2 Fermions) above a filled, inert 
electronic shell. These electrons have available to them 5 spatial single-particle states, 
ψa, ψb, ψc, ψd and ψe with energies εa = 0, εb = εc = ∆, and εd = εe = 3∆/2. In what 
follows, assume that there is no interaction between the electrons. [Note that part g 
revisits b,c,d and f.] 

a)  How many 3-particle states are available to the atom? Be sure to take into 
account both the spin and spatial variables when determining your number. 

b)  Write down the terms in the partition function Z(T ) arising from the states 
corresponding to the two lowest 3-particle energies. 

c) Write down the terms in the partition function Z(T ) arising from the states 
corresponding to the two highest 3-particle energies. 

d) What is the entropy at T = 0? 

e) What value does the entropy approach asymptotically at very high T? 

f) What is the asymptotic value for the heat capacity at very high T? 

g)  Repeat b), c), d) and f) [but not a) or e)] for the case where the three identical 
particles are spin 0 Bosons∗. 

∗I will treat to a free dinner in the fall anyone who answers a) for spin 0 Bosons without resorting 
to brute force. 
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Problem 3: Realistic Super Insulation (20 points) 


TH T TC 

Two parallel plates of infinite extent are separated by a vacuum and maintained at 
temperatures TH and TC . The surface of each plate acts as a black body. A thin 
conducting sheet is suspended in the vacuum as shown in the figure. Heat can be 
transferred to the sheet only through the vacuum. The sheet has an absorptivity 
α < 1, and a power reflectivity r = 1  − α. 

a) Find the steady state temperature T of the sheet. 

b)  Find the heat flow from the hotter plate to the colder plate as a fraction F of 
that which would occur in the absence of the sheet. 

Problem 4: Adiabatic Demagnetization (10 points) 

Consider the extreme situation of an ideal paramagnet in thermal contact with a 
sample so small that the thermodynamics of the assembly is dominated by that of 
the paramagnet alone. The assembly is cooled adiabatically by reducing the applied 
magnetic field from 8 kilogauss to 20 gauss. What is the final temperature if the 
initial temperature was 1 Kelvin? [This does not require an extensive calculation.] 
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Work in simple systems 

Hydrostatic system 
Surface film 
Linear system 
Dielectric material 
Magnetic material 

−PdV  
/dAS
F dL 
E dP
HdM  

Thermodynamic Potentials when work done on the system is dW = Xdx 


Energy 
Helmholtz free energy 
Gibbs free energy 
Enthalpy 

E 
F = E − TS  
G = E − TS  − Xx  
H = E − Xx  

dE  = TdS  + Xdx  
dF  = −SdT + Xdx  
dG  = −SdT − xdX 
dH  = TdS  − xdX 

Statistical Mechanics of a Quantum Harmonic Oscillator 

1ε(n) = (n + 
2 
)h̄ω n = 0, 1, 2, . . .  

p(n) =  e−(n+ 1 
2
)h̄ω/kT /Z(T ) 

Z(T ) =  e−
1 
2 ̄

hω/kT )−1hω/kT (1 − e−¯

1 hω(ehω/kT − 1)−1¯< ε(n) >= 
2 
hω + ¯¯

Radiation laws 

1Kirchoff’s law: e(ω, T )/α(ω, T ) =  
4 
c u(ω, T ) for all materials where e(ω, T ) is  the 

emissive power and α(ω, T ) the absorptivity of the material and u(ω, T ) is  the uni­
versal blackbody energy density function. 

Stefan-Boltzmann law: e(T ) =  σT 4 for a blackbody where e(T ) is  the emissive power 
integrated over all frequencies. (σ = 56.9 × 10−9 watt-m−2K−4) 
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