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Practice Exam #2 

Problem 1 (35 points) Weakly Interacting Bose Gas 

At low temperatures the entropy and isothermal compressibility of a weakly interacting Bose 
gas can be approximated by 
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V 2 
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where a and c are constants. In the limit of low temperature and high volume the pressure 
P and the internal energy density E/V approach zero. 

a) (15) Find the equation of state P (T, V ). 

b) (15) Find the internal energy U(T, V ). 

c) (5) Does this model for the gas obey the third law of thermodynamics? Explain the 
reasoning behind your answer. 

Problem 2 (30 points) Carnot heat engine 

A reversible Carnot heat engine operates between two reservoirs with temperatures T1 and 
T2 where T2 > T1. The colder reservoir is so large that T1 remains essentially constant. 
However, the hotter reservoir consists of a finite amount of ideal gas at constant volume, for 
which the heat capacity CV is a given constant. 

After the heat engine has run for some period of time, the temperature of the hotter reservoir 
is reduced from T2 to T1. 

a) (10) What is the change in the entropy ΔS of the hotter reservoir during this period? 

b) (10) How much work did the engine do during this period? 

c) (10) What is the total change in the entropy of the system during this period? 
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Problem 3 (35 points) A Classical Ultra-relativistic Gas 

A homogeneous gas of N classical, non-interacting, indistinguishable atoms is confined in a 
volume V . The gas is in thermal equilibrium at a temperature T which is so high that the 
energy of each atom can be approximated by its limiting ultra-relativistic limit: 

f = cp where p ≡ |1p| 

a) (7) Find the partition function for the gas, Z(N, L, T ). You may want to use spherical 
coordinates in which dp3 = p2 sin θ dpdθdφ where p is the magnitude of the momentum 
vector. 

b) (7) Find the probability density for magnitude of the momentum, p(p). Sketch the 
result. 

c) (7) Find the internal energy of the gas, U(T, V, N). 

d) (7) Find the pressure, P (T, V, N). 

e) (7) Find the entropy, S(T, V, N). [Hint: It is possible to do this without taking another 
derivative.] 

2
 



Work in simple systems 

Hydrostatic system −P dV
 
Surface film γ dA
 
Linear system FdL
 
Dielectric material EdP
 
Magnetic material HdM
 

Thermodynamic Potentials when work done on the system is dW = Xdx 

Energy E dE = T dS + Xdx
 
Helmholtz free energy F = E − TS dF = −SdT + Xdx
 
Gibbs free energy G = E − TS − Xx dG = −SdT − xdX
 
Enthalpy H = E − Xx dH = T dS − xdX
 

Statistical Mechanics of a Quantum Harmonic Oscillator 

f(n) = (n + 
2
1 )nω n = 0, 1, 2, . . . 

1 
2
)nω/kT /Z(T )−(n+p(n) = e 

Z(T ) = e −
1 
2
nω/kT (1 − e −nω/kT )−1 

1 nω/kT − 1)−1< f(n) >= 
2 nω + nω(e

Radiation laws 

Kirchoff’s law: e(ω, T )/α(ω, T ) = 1
4 c u(ω, T ) for all materials where e(ω, T ) is the emissive 

power and α(ω, T ) the absorptivity of the material and u(ω, T ) is the universal blackbody 
energy density function. 

Stefan-Boltzmann law: e(T ) = σT 4 for a blackbody where e(T ) is the emissive power inte­
grated over all frequencies. (σ = 56.9 × 10−9 watt-m−2K−4) 

Integrals Definite Integrals  axe For integer n and max dx =e 
a  ∞ 
e nax 

x e −x dx = n!x e ax dx = (ax − 1)
a 2  0 

∞ −x ax e √ 
2 e 2 √ dx = πx e ax dx = (a x 2 − 2ax + 2)

a3 0 x  � �  ∞ 
dx e 2n −x2/2σ2 

= ln 
x 

(2πσ2)−1/2 x e dx = 1 · 3 · 5 · · · (2n − 1) σn

1 + ex 1 + ex  ∞ 
−∞ 

12−x dx =
x e
  0
1 

2

n!m! 
x m(1 − x)n dx = 

0 (m + n + 1)! 
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